Automatic Modulation Classification Based on Deep Feature Fusion for High Noise Level and Large Dynamic Input
Abstract
:1. Introduction
2. Signal Model
3. The Proposed Framework
3.1. Overview of the Proposed Framework
3.2. Features Extraction
3.2.1. CNN-Based Feature Extraction
3.2.2. SAE-Based Feature Extraction
3.2.3. Statistical Feature Extraction
3.3. Classification with PNN
4. Experiment Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobre, O.A.; Abdi, A.; Bar-Ness, Y.; Su, W. Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Commun. 2007, 1, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, P.; Anastasopoulos, A.; Polydoros, A. Likelihood ratio tests for modulation classification. In Proceedings of the IEEE Military Communications Conference, Los Angeles, CA, USA, 22–25 October 2000; pp. 670–674. [Google Scholar]
- Wei, W.; Mendel, J.M. Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Trans. Commun. 2000, 48, 189–193. [Google Scholar] [CrossRef]
- Ho, K.C.; Hong, L. Likelihood method for BPSK and unbalanced QPSK modulation classification. Proc. SPIE Int. Soc. Opt. Eng. 2001, 4395, 155–162. [Google Scholar]
- Majhi, S.; Gupta, R.; Xiang, W.; Glisic, S. Hierarchical hypothesis and feature-based blind modulation classification for linearly modulated signals. IEEE Trans. Veh. Technol. 2017, 66, 11057–11069. [Google Scholar] [CrossRef] [Green Version]
- Dobre, O.A.; Bar-Ness, Y.; Su, W. Higher-order cyclic cumulants for high order modulation classification. IEEE Mil. Commun. Conf. 2003, 1, 112–117. [Google Scholar]
- Su, W. Feature space analysis of modulation classification using very high-order statistics. IEEE Commun. Lett. 2003, 17, 1688–1691. [Google Scholar] [CrossRef]
- Orlic, V.D.; Dukic, M.L. Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Commun. Lett. 2009, 3, 917–919. [Google Scholar] [CrossRef]
- Ebrahimzadeh, A.; Ghazalian, R. Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Eng. Appl. Artif. Intell. 2011, 24, 50–59. [Google Scholar] [CrossRef]
- Ghauri, S.A.; Qureshi, I.M.; Shah, I. Modulation classification using cyclostationary features on fading channels. Res. J. Appl. Sci. Eng. Technol. 2014, 24, 5331–5339. [Google Scholar] [CrossRef]
- Kavalov, D.; Kalinin, V. Neural network surface acoustic wave RF signal processor for digital modulation recognition. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1280–1290. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, S.; Yin, Z.; Ma, B.; Yang, Z. Robust automatic modulation classification under varying noise conditions. IEEE Access 2017, 5, 19733–19741. [Google Scholar] [CrossRef]
- Afan, A.; Yangyu, F.; Liu, S. Automatic modulation classification of digital modulation signals with stacked auto-encoders. Digit. Signal Process. 2017, 71, 108–116. [Google Scholar]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. Commun. Comput. Inf. Sci. 2016, 629, 213–226. [Google Scholar]
- Meng, F.; Chen, P.; Wu, L.; Wang, X. Automatic modulation classification: A deep learning enabled approach. IEEE Trans. Veh. Technol. 2018, 67, 10760–10771. [Google Scholar] [CrossRef]
- Ahmadi, N. Using fuzzy clustering and TTSAS algorithm for modulation classification based on constellation diagram. Eng. Appl. Artif. Intell. 2010, 23, 357–370. [Google Scholar] [CrossRef]
- Zheng, S.; Qi, P.; Chen, S.; Yang, X. Fusion methods for CNN-based automatic modulation classification. IEEE Access 2019, 7, 66496–66504. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, X.; Gao, J.; You, S. Fusion image based radar signal feature extraction and modulation recognition. IEEE Access 2019, 7, 13135–13148. [Google Scholar] [CrossRef]
- Welch, P.D. A direct digital method of power spectrum estimation. IBM J. Res. Dev. 1961, 5, 141–156. [Google Scholar] [CrossRef]
- Ye, J.; Deng, P.; Li, P.; Yan, L.; Pan, W.; Zou, X.; Hao, M. Photonic-assisted modulation classification for RF signals using probabilistic neural network. In Proceedings of the Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Kumar, Y.; Sheoran, M.; Jajoo, G.; Yadav, S.K. Automatic modulation classification based on constellation density using deep learning. IEEE Commun. Lett. 2020, 24, 1275–1278. [Google Scholar] [CrossRef]
- Haldar, M.; Abdool, M.; Ramanathan, P.; Xu, T.; Yang, S.; Duan, H.; Zhang, Q.; Barrow-Williams, N.; Turnbull, B.C.; Collins, B.M.; et al. Applying deep learning to airbnb search. arXiv 2018, arXiv:1810.09591. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le Quoc, V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. arXiv 2017, arXiv:1706.02515. [Google Scholar]
- Shi, Y.; Xu, H.; Jiang, L.; Liu, Y. Few-shot modulation classification method based on feature dimension reduction and pseudo-label training. IEEE Access 2020, 8, 140411–140425. [Google Scholar] [CrossRef]
- Lopatka, J.; Macrej, P. Automatic modulation classification using statistical moments and a fuzzy classifier. In Proceedings of the 5th International Conference on Signal Processing, Beijing, China, 21–24 August 2000; pp. 1500–1506. [Google Scholar]
- Pajic, M.S.; Veinovic, M.; Peric, M.; Orlic, V.D. Modulation order reduction method for improving the performance of AMC algorithm based on sixth–order cumulants. IEEE Access 2020, 8, 106386–106394. [Google Scholar] [CrossRef]
- Barrera Alvarez, J.L.; Hernandez Montero, F.E. Classification of MPSK signals through eighth-order statistical signal processing. IEEE Lat. Am. Trans. 2017, 15, 1601–1607. [Google Scholar] [CrossRef]
- Hasan, A.N.; Shongwe, T. The use of multiclass support vector machines and probabilistic neural networks for signal classification and noise detection in PLC/OFDM channels. In Proceedings of the International Conference Radioelektronika, Bratislava, Slovakia, 15–16 May 2020; pp. 1–6. [Google Scholar]
Class | Name | Modulation |
---|---|---|
2PSK | 2-ary Phase Shift Keying | |
4PSK | 4-ary Phase Shift Keying | |
2ASK | 2-ary Amplitude Shift Keying | |
4ASK | 4-ary Amplitude Shift Keying | |
8ASK | 8-ary Amplitude Shift Keying | |
2FSK | 2-ary Frequency Shift Keying Keying | |
4FSK | 4-ary Frequency Shift Keying Keying | |
8FSK | 8-ary Frequency Shift Keying Keying | |
32QAM | 32-ary Quadrature Amplitude Modulation | |
64QAM | 64-ary Quadrature Amplitude Modulation |
Layer (Type) | Output Dimensions | Parameters Number |
---|---|---|
Input | 2 × 16,384 | 0 |
Conv2- Pool2/Swish | 1 × 8192 × 1 | 48 |
Conv2- Pool2/Swish | 1 × 4096 × 4 | 48 |
Conv2- Pool2/Swish | 1 × 2048 × 4 | 48 |
Conv2- Pool2/Swish | 1 × 1024 × 4 | 48 |
Conv2- Pool2/Swish | 1 × 512 × 4 | 48 |
Conv2- Pool2/Swish | 1 × 256 × 4 | 48 |
Conv2- Pool2/Swish | 1 × 128 × 4 | 48 |
Full Connected/SeLU | 64 | 32,768 |
Softmax | 10 | 640 |
Parameter | Value/Range | Description |
---|---|---|
Sampling frequency | 50 MHz | The sampling rate |
Signal length | 16,384 | The number of sampling points |
Bandwidth | MHz | Randomly selection |
SNR for training | dB | The dynamic range |
SNR for test | dB | For evaluation |
Training samples | 84,000 | The total samples for training |
Test samples | 21,000 | The total samples for test |
Test samples for each SNR | 100 | For each signal type |
Models | PNN | ANN | SAE | SVM |
---|---|---|---|---|
Training Time (s) | 13.711 | 18.233 | 34.249 | 231.178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Ren, Z.; Li, L.; Zhu, Z. Automatic Modulation Classification Based on Deep Feature Fusion for High Noise Level and Large Dynamic Input. Sensors 2021, 21, 2117. https://doi.org/10.3390/s21062117
Han H, Ren Z, Li L, Zhu Z. Automatic Modulation Classification Based on Deep Feature Fusion for High Noise Level and Large Dynamic Input. Sensors. 2021; 21(6):2117. https://doi.org/10.3390/s21062117
Chicago/Turabian StyleHan, Hui, Zhiyuan Ren, Lin Li, and Zhigang Zhu. 2021. "Automatic Modulation Classification Based on Deep Feature Fusion for High Noise Level and Large Dynamic Input" Sensors 21, no. 6: 2117. https://doi.org/10.3390/s21062117
APA StyleHan, H., Ren, Z., Li, L., & Zhu, Z. (2021). Automatic Modulation Classification Based on Deep Feature Fusion for High Noise Level and Large Dynamic Input. Sensors, 21(6), 2117. https://doi.org/10.3390/s21062117