Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism
Abstract
:1. Introduction
- Morphology of the average ABP pulse (): The proposed methodology has the capacity to estimate , from which DBP, DN, and SBP values are then extracted.
- Raw PPG signal and demographic information (DI): The proposed deep learning architecture allows the combination of the raw signal of the PPG and the DI age and gender of each subject in the same model. The addition of DI improves the estimation of .
- Limited bias: The quantities of records per subject and signals duration are limited to reduce subject’s biases.
- Reproducibility: The processed dataset, subject’s ID, temporal information of each signal, model architecture, and training sources codes are available for reproducibility. Please see Supplementary Materials Section. The DI used due to requirements from [31] is not shared, but the codes to extract it if the request to access to MIMIC-III CDB is accepted, are also available.
2. Materials and Methods
2.1. Preprocessing
2.2. Processing
2.3. Deep Learning
2.3.1. RNN Encoder-Decoder
2.3.2. Model Inputs
2.3.3. Model Architecture
2.3.4. Loss Functions
2.4. Hyperparameters and Experimental Settings
2.5. Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ABP | Arterial blood pressure |
ABPM | Arterial blood pressure morphology |
Average arterial blood pressure pulse morphology | |
Estimated arterial blood pressure pulse morphology | |
BP | Blood pressure |
BCG | Ballistocardiogram |
BHS | British Hypertension Society |
CDB | Clinical database |
CNN | Convolutional neural network |
CVDs | Cardiovascular diseases |
DCAE | Deep convolutional auto-encoder |
DI | Demographic information |
DN | Dicrotic notch |
Dicrotic notch time occurrence | |
GPR | Gaussian process regression |
GRU | Gated recurrent unit |
LSTM | Long-short term memory |
LR | Learning rate |
MAE | Mean absolute error |
NN | Neural network |
R | Pearson’s correlation coefficient |
RNN | Recurrent neural network |
RMSE | Root-mean squared error |
Coefficient of determination | |
SQ | Signal quality |
STD | Standard deviation of the errors |
PAT | Pulse arrival time |
PEP | Pre-ejection period |
PPG | Photoplethysmography |
PPG’ | 1st derivative of the photoplethysmogram |
PPG” | 2nd derivative of the photoplethysmogram |
PTT | Pulse transit time |
PWV | Pulse wave velocity |
MWDB | Matched waveform database |
References
- Virani Salim, S.; Alvaro, A.; Benjamin Emelia, J.; Bittencourt Marcio, S.; Callaway Clifton, W.; Carson April, P.; Chamberlain Alanna, M.; Chang Alexander, R.; Susan, C.; Delling Francesca, N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 20 October 2020).
- Avolio, A.P.; Butlin, M.; Walsh, A. Arterial blood pressure measurement and pulse wave analysis—Theitr role in enhancing cardiovascular assessment. Physiol. Meas. 2010, 31, R1–R47. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P. Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2012. [Google Scholar] [CrossRef]
- O’Rourke, M.F.; Staessen, J.A.; Vlachopoulos, C.; Duprez, D.; Plante, G.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002, 15, 426–444. [Google Scholar] [CrossRef]
- Pauca Alfredo, L.; O’Rourke Michael, F.; Kon Neal, D. Prospective Evaluation of a Method for Estimating Ascending Aortic Pressure From the Radial Artery Pressure Waveform. Hypertension 2001, 38, 932–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryan, W.; Lacy Peter, S.; Thom Simon, M.; Kennedy, C.; Alice, S.; David, C.; Hughes Alun, D.; Thurston, H.; O’Rourke, M. Differential Impact of Blood Pressure—Lowering Drugs on Central Aortic Pressure and Clinical Outcomes. Circulation 2006, 113, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, J.; Imai, Y.; O’Rourke, M.F. Indices of Pulse Wave Analysis Are Better Predictors of Left Ventricular Mass Reduction Than Cuff Pressure. Am. J. Hypertens. 2007, 20, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.R.; Stepanek, J.; Cevette, M.; Covalciuc, M.; Hurst, R.T.; Tajik, A.J. Noninvasive Measurement of Central Vascular Pressures With Arterial Tonometry: Clinical Revival of the Pulse Pressure Waveform? In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2010; Volume 85, pp. 460–472. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Auer, J.; O’Rourke, M.F.; Punzengruber, C.; Kvas, E.; Eber, B. Prolonged mechanical systole and increased arterial wave reflections in diastolic dysfunction. Heart 2006, 92, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- Noda, A.; Nakata, S.; Fukatsu, H.; Yasuda, Y.; Miyao, E.; Miyata, S.; Yasuma, F.; Murohara, T.; Yokota, M.; Koike, Y. Aortic Pressure Augmentation as a Marker of Cardiovascular Risk in Obstructive Sleep Apnea Syndrome. Hypertens. Res. 2008, 31, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Geddes, L.A.; Voelz, M.H.; Babbs, C.F.; Bourland, J.D.; Tacker, W.A. Pulse Transit Time as an Indicator of Arterial Blood Pressure. Psychophysiology 1981, 18, 71–74. [Google Scholar] [CrossRef]
- Mukkamala, R.; Hahn, J.; Inan, O.T.; Mestha, L.K.; Kim, C.; Töreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, D.J.; Babbs, C.F.; Geddes, L.A.; Bourland, J.D. Measurements of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrason. Imaging 1979, 1, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Payne, R.A.; Symeonides, C.N.; Webb, D.J.; Maxwell, S.R.J. Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 2006, 100, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure? J. Clin. Med. 2018, 7, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, K.; Hung, K.; Zhang, Y. Noninvasive and cuffless measurements of blood pressure for telemedicine. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; Volume 4, pp. 3592–3593. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring. IEEE Trans. Biomed. Eng. 2016, 64, 859–869. [Google Scholar] [CrossRef]
- Kurylyak, Y.; Lamonaca, F.; Grimaldi, D. A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 280–283. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.H.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodríguez, J.C.; Ruiz-Sanmartín, A.; Ribas, V.; Caballero, J.; García-Roche, A.; Riera, J.; Nuvials, X.; de Nadal, M.; de Sola-Morales, O.; Serra, J.; et al. Innovative continuous non-invasive cuffless blood pressure monitoring based on photoplethysmography technology. Intensive Care Med. 2013, 39, 1618–1625. [Google Scholar] [CrossRef]
- Eom, H.; Lee, D.; Han, S.; Hariyani, Y.S.; Lim, Y.; Sohn, I.; Park, K.; Park, C. End-to-End Deep Learning Architecture for Continuous Blood Pressure Estimation Using Attention Mechanism. Sensors 2020, 20, 2338. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chen, Z.; Ward, R.; Elgendi, M. Photoplethysmography and Deep Learning: Enhancing Hypertension Risk Stratification. Biosensors 2018, 8, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [Green Version]
- Sideris, C.; Kalantarian, H.; Nemati, E.; Sarrafzadeh, M. Building Continuous Arterial Blood Pressure Prediction Models Using Recurrent Networks. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Sadrawi, M.; Lin, Y.T.; Lin, C.H.; Mathunjwa, B.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography. Sensors 2020, 20, 3829. [Google Scholar] [CrossRef] [PubMed]
- Hosanee, M.; Chan, G.; Welykholowa, K.; Cooper, R.; Kyriacou, P.A.; Zheng, D.; Allen, J.; Abbott, D.; Menon, C.; Lovell, N.H.; et al. Cuffless Single-Site Photoplethysmography for Blood Pressure Monitoring. J. Clin. Med. 2020, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- El-Hajj, C.; Kyriacou, P.A. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed. Signal Process. Control 2020, 58, 101870. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger Ary, L.; Amaral Luis, A.N.; Leon, G.; Hausdorff Jeffrey, M.; Ivanov Plamen, C.; Mark Roger, G.; Mietus Joseph, E.; Moody George, B.; Chung-Kang, P.; Eugene, S.H. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2020, 101, e215–e220. [Google Scholar] [CrossRef] [Green Version]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Li, B.N.; Dong, M.C.; Vai, M.I. On an automatic delineator for arterial blood pressure waveforms. Biomed. Signal Process. Control 2010, 5, 76–81. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. arXiv 2015, arXiv:1508.04025. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2017, arXiv:1608.06993. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Saxe, A.M.; McClelland, J.L.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. arXiv 2013, arXiv:1312.6120. [Google Scholar]
- O’Brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; O’Malley, K.; Jamieson, M.; Altman, D.; Bland, M.; Atkins, N. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J. Hypertens. 1990, 8, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Elgendi, M.; Chen, Z.; Ward, R. An optimal filter for short photoplethysmogram signals. Sci. Data 2018, 5, 180076. [Google Scholar] [CrossRef]
Marker | Scenario | ||||
---|---|---|---|---|---|
DBP | 0.10 ± 0.03 | 8.88 ± 0.27 | 7.01 ± 0.23 | 8.84 ± 0.25 | |
0.19 ± 0.04 | 8.47 ± 0.29 | 6.57 ± 0.20 | 8.43 ± 0.29 | ||
0.41 ± 0.04 | 7.40 ± 0.20 | 5.56 ± 0.18 | 7.32 ± 0.17 | ||
DN | 0.29 ± 0.02 | 11.23 ± 0.44 | 8.72 ± 0.31 | 11.15 ± 0.38 | |
0.32 ± 0.04 | 10.95 ± 0.27 | 8.54 ± 0.37 | 10.84 ± 0.26 | ||
0.50 ± 0.02 | 9.67 ± 0.17 | 7.08 ± 0.19 | 9.63 ± 0.15 | ||
SBP | 0.17 ± 0.04 | 18.20 ± 0.52 | 14.55 ± 0.56 | 18.04 ± 0.54 | |
0.19 ± 0.05 | 18.07 ± 0.60 | 14.39 ± 0.42 | 17.87 ± 0.40 | ||
0.39 ± 0.05 | 15.96 ± 0.60 | 12.08 ± 0.36 | 15.67 ± 0.50 |
Scenario | Pulse Duration | |||||
---|---|---|---|---|---|---|
0.55 ± 0.10 | 33 ± 3 | 24 ± 2 | 0.97 ± 0.02 | 22 ± 8 | 15 ± 9 | |
0.54 ± 0.05 | 35 ± 3 | 25 ± 1 | 0.97 ± 0.01 | 24 ± 5 | 16 ± 4 | |
0.61 ± 0.02 | 33 ± 1 | 23 ± 1 | 0.98 ± 0.01 | 18 ± 2 | 11 ± 1 |
Scenario | |||
---|---|---|---|
0.98 ± 0.002 | 10.39 ± 0.11 | 9.06 ± 0.09 | |
0.98 ± 0.001 | 10.26 ± 0.11 | 8.89 ± 0.10 | |
0.98 ± 0.001 | 8.65 ± 0.20 | 7.37 ± 0.21 |
Scenario | Cumulative Error Percentage | |||
---|---|---|---|---|
DBP | 41.8% | 76.6% | 92.9% | |
SBP | 21.6% | 42.0% | 59.3% | |
DBP | 45.5% | 80.2% | 93.5% | |
SBP | 21.3% | 41.9% | 58.6% | |
DBP | 56.6% | 86.0% | 95.5% | |
SBP | 29.6% | 53.2% | 70.3% | |
BHS [44] | Grade A | 60% | 85% | 95% |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% |
Scenario | Limits | Mean | |
---|---|---|---|
DBP | [−17.80, 16.77] | −0.52 | |
[−16.87, 15.90] | −0.49 | ||
[−14.23, 14.48] | 0.13 | ||
SBP | [−32.85, 37.27] | 2.21 | |
[−34.36, 35.60] | 0.62 | ||
[−28.78, 32.69] | 1.95 |
Author | Dataset | Method | Input | Signals | Calibration | Error | |
---|---|---|---|---|---|---|---|
DBP | SBP | ||||||
Chan et al. [18] | Unspecified | Linear regression | Feature | ECG | Cal-based | ME: 4.08 | ME: 7.49 |
PPG | STD: 5.62 | STD: 8.82 | |||||
Kurylyak et al. [20] | MIMIC | Neural network | Feature | PPG | Cal-based | MAE: 2.21 | MAE: 3.80 |
(15,000 beats) | STD: 2.09 | STD: 3.46 | |||||
Chowdhury et al. [21] | Dataset from [45] (126 subjects) | Gaussian process regression (GPR) | Feature | PPG | Cal-based | MAE: 1.74 | MAE: 3.02 |
RMSE: 3.59 | RMSE: 6.74 | ||||||
R: 0.96 | R: 0.95 | ||||||
Eom et al. [24] | Own data (15 subjects) | Deep learning (CNN+GRU +Attention) | Raw | ECG | Cal-based | MAE: 3.33 RMSE: 3.42 | MAE: 4.06 RMSE: 4.04 |
BCG | |||||||
PPG | |||||||
Monte-Moreno [22] | Own data (410 subjects) | Random Forest (RF) | Feature | PPG | Cal-free | : 0.89 | : 0.91 |
Kachuee et al. [19] | MIMIC-II (1000 subjects) | AdaBoost | Feature | ECG PPG | Cal-free | MAE: 5.35 | MAE: 11.17 |
STD: 6.14 | STD: 10.09 | ||||||
R: 0.48 | R: 0.59 | ||||||
Cal-based | MAE: 4.31 | MAE: 8.21 | |||||
STD: 3.52 | STD: 5.43 | ||||||
R: 0.57 | R: 0.54 | ||||||
Slapničar et al. [26] | MIMIC-III (510 subjects) | Deep learning (ResNet) | Raw | PPG | Cal-free | MAE: 12.38 | MAE:15.41 |
Cal-based | MAE: 6.88 | MAE: 9.43 | |||||
This work | MIMIC-III Matched Subset (1131 subjects) | Deep learning (Seq2seq +Attention) | Raw | PPG | Cal-free | MAE: 6.57 | MAE: 14.39 |
STD: 8.43 | STD: 17.87 | ||||||
RMSE: 8.47 | RMSE: 18.07 | ||||||
: 0.19 | : 0.19 | ||||||
Cal-based | MAE: 5.56 | MAE: 12.08 | |||||
STD: 7.32 | STD: 15.67 | ||||||
RMSE: 7.40 | RMSE: 15.96 | ||||||
: 0.41 | : 0.39 |
Author | Dataset | Method | Calibration | Error |
---|---|---|---|---|
Sideris et al. [27] | MIMIC (42 subjects) | LSTM | Cal-based | RMSE: 6.0 |
STD: 3.26 | ||||
R:0.95 | ||||
Sadrawi et al. [28] | Own data (18 subjects) | DCAE | Cal-based | RMSE: 3.46 |
MAE: 2.33 | ||||
R: 0.98 | ||||
This work | MIMIC-III Matched Subset (1131 subjects) | Seq2seq+Attention | Cal-free | RMSE: 10.26 |
MAE: 8.89 | ||||
R: 0.98 | ||||
Cal-based | RMSE: 8.67 | |||
MAE: 7.39 | ||||
R: 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre, N.; Grall-Maës, E.; Cymberknop, L.J.; Armentano, R.L. Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism. Sensors 2021, 21, 2167. https://doi.org/10.3390/s21062167
Aguirre N, Grall-Maës E, Cymberknop LJ, Armentano RL. Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism. Sensors. 2021; 21(6):2167. https://doi.org/10.3390/s21062167
Chicago/Turabian StyleAguirre, Nicolas, Edith Grall-Maës, Leandro J. Cymberknop, and Ricardo L. Armentano. 2021. "Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism" Sensors 21, no. 6: 2167. https://doi.org/10.3390/s21062167
APA StyleAguirre, N., Grall-Maës, E., Cymberknop, L. J., & Armentano, R. L. (2021). Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism. Sensors, 21(6), 2167. https://doi.org/10.3390/s21062167