A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm
Abstract
:1. Introduction
2. Theory
2.1. Stochastic Static Damage Identification Equation
2.2. Homotopy Solution of the Stochastic Damage Identification Equation
2.3. Static Condensation of Damage Identification
2.4. L1 Regularization Algorithm
2.5. Probability-Based Damage Identification
3. Numerical Examples
3.1. A Simply Supported Beam
3.1.1. Effect of Damage States
3.1.2. Effect of Uncertainty of Measurement Errors
3.1.3. Effect of Uncertainty of Modelling Error
3.2. A Continuous Beam with Variable Cross-Section
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakshmanan, N.; Raghuprasad, B.; Muthumani, K.; Gopalakrishnan, N.; Basu, D. Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements. Comput. Concr. 2008, 5, 37–60. [Google Scholar] [CrossRef]
- Lu, Z.R.; Zhu, J.J.; Ou, Y.J. Structural damage identification using incomplete static displacement measurement. Struct. Eng. Mech. Int. J. 2017, 63, 251–257. [Google Scholar]
- Guo, J.; Wang, L.; Takewaki, I. Static damage identification in beams by minimum constitutive relation error. Inverse Probl. Sci. Eng. 2018, 27, 1347–1371. [Google Scholar] [CrossRef]
- Shenton, H.W.; Hu, X. Damage Identification Based on Dead Load Redistribution: Methodology. J. Struct. Eng. 2006, 132, 1254–1263. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.Y. Damage localization of beam bridges using quasi-static strain influence lines based on the BOTDA technique. Sensors. 2018, 18, 4446. [Google Scholar] [CrossRef] [Green Version]
- Maity, D.; Saha, A. Damage assessment in structure from changes in static parameter using neural networks. Sadhana 2004, 29, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xiang, W.; Zhu, H. Damage identification in beam type structures based on statistical moment using a two step method. J. Sound Vib. 2014, 333, 745–760. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.; Xiang, W.; Zhu, H. Experimental investigation of damage identification in beam structures based on the strain statistical moment. Adv. Struct. Eng. 2017, 20, 747–758. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, P.; Jin, T.; Zhu, H. Damage Identification for Beam Structures Using the Laplace Transform-Based Spectral Element Method and Strain Statistical Moment. J. Aerosp. Eng. 2018, 31, 04018016. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Chen, Z.; Zhou, J.; Zhu, C. Mode-specific damage identification method for reinforced concrete beams: Concept, theory and experiments. Constr. Build. Mater. 2016, 124, 1090–1099. [Google Scholar] [CrossRef]
- Impollonia, N.; Failla, I.; Ricciardi, G. Parametric Statistical Moment Method for Damage Detection and Health Monitoring. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2016, 2, 4016001. [Google Scholar] [CrossRef]
- Xiang, C.-S.; Li, L.-Y.; Zhou, Y.; Dang, C. An Efficient Damage Identification Method for Simply Supported Beams Based on Strain Energy Information Entropy. Adv. Mater. Sci. Eng. 2020, 2020, 9283949. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, N.; Zhong, Y. A two-step damage quantitative identification method for beam structures. Measurement. 2021, 168, 108434. [Google Scholar] [CrossRef]
- Pooya, S.M.H.; Massumi, A. A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation. Appl. Math. Model. 2021, 91, 670–694. [Google Scholar] [CrossRef]
- He, H.-X.; Zheng, J.-C.; Liao, L.-C.; Chen, Y.-J. Damage identification based on convolutional neural network and recurrence graph for beam bridge. Struct. Health Monit. 2020, 5, 1–17. [Google Scholar] [CrossRef]
- Wang, S.; Long, X.; Luo, H.; Zhu, H. Damage Identification for Underground Structure Based on Frequency Response Function. Sensors 2018, 18, 3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, A.; Pau, A. Detection of a concentrated damage in a parabolic arch by measured static displacements. Struct. Eng. Mech. 2011, 39, 751–765. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Sun, B. Structural damage localization and quantification using static test data. Struct. Health Monit. 2011, 10, 381–389. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Kazemiyan, M.S.; S, A.A. Static Damage Identification of 3D and 2D Frames. Mech. Based Des. Struct. Mach. 2013, 42, 70–96. [Google Scholar] [CrossRef]
- Seyedpoor, S.; Yazdanpanah, O. An efficient indicator for structural damage localization using the change of strain energy based on static noisy data. Appl. Math. Model. 2014, 38, 2661–2672. [Google Scholar] [CrossRef]
- Wang, X.; Hu, N.; Fukunaga, H.; Yao, Z.H. Structural damage identification using static test data and changes in frequencies. Eng. Struct. 2001, 23, 610–621. [Google Scholar] [CrossRef]
- Raghuprasad, B.K.; Lakshmanan, N.; Gopalakrishnan, N.; Sathishkumar, K.; Sreekala, R. Damage identification of beam-like structures with contiguous and distributed damage. Struct. Control Health Monit. 2012, 20, 496–519. [Google Scholar] [CrossRef]
- Lu, Z.; Lin, X.; Chen, Y.; Huang, M. Hybrid sensitivity matrix for damage identification in axially functionally graded beams. Appl. Math. Model. 2017, 41, 604–617. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; Yang, Y.; Xu, D. An improved EMD method for modal identification and a combined static-dynamic method for damage detection. J. Sound Vib. 2018, 420, 242–260. [Google Scholar] [CrossRef]
- Friswell, M. Damage identification using inverse methods. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 365, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Caddemi, S.; Greco, A. The influence of instrumental errors on the static identification of damage parameters for elastic beams. Comput. Struct. 2006, 84, 1696–1708. [Google Scholar] [CrossRef]
- Buda, G.; Caddemi, S. Identification of Concentrated Damages in Euler-Bernoulli Beams under Static Loads. J. Eng. Mech. 2007, 133, 942–956. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z. Identification of boundary conditions of tapered beam-like structures using static flexibility measurements. Mech. Syst. Signal Process. 2011, 25, 2484–2500. [Google Scholar] [CrossRef]
- Hu, X.; Shenton, H.W. Damage Identification Based on Dead Load Redistribution: Effect of Measurement Error. J. Struct. Eng. 2006, 132, 1264–1273. [Google Scholar] [CrossRef]
- Yu, L.; Cheng, L.; Yam, L.; Yan, Y. Application of eigenvalue perturbation theory for detecting small structural damage using dynamic responses. Compos. Struct. 2007, 78, 402–409. [Google Scholar] [CrossRef]
- Yin, T.; Lam, H.-F.; Zhu, H.-P. Statistical detection of structural damage based on model reduction. Appl. Math. Mech. 2009, 30, 875–888. [Google Scholar] [CrossRef]
- He, R.; Zhu, Y.; He, W.; Chen, H. Structural Damage Recognition Based on Perturbations of Curvature Mode Shape and Frequency. Acta Mech. Solida Sin. 2018, 31, 794–803. [Google Scholar] [CrossRef]
- Wong, C.N.; Zhu, W.D.; Xu, G.Y. On an Iterative General-Order Perturbation Method for Multiple Structural Damage Detection. J. Sound Vib. 2004, 273, 363–386. [Google Scholar] [CrossRef]
- Stefanou, G. The stochastic finite element method: Past, present and future. Comput. Methods Appl. Mech. Eng. 2009, 198, 1031–1051. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, S.K.; Nair, P.B.; Keane, A.J. Comparative study of projection schemes for stochastic finite element analysis. Comput. Methods Appl. Mech. Eng. 2006, 195, 2371–2392. [Google Scholar] [CrossRef] [Green Version]
- Apetre, N.; Ruzzene, M. Spectral and perturbation analysis for ultrasonic guided waves. J. Sound Vib. 2012, 331, 5358–5369. [Google Scholar] [CrossRef]
- Sachdeva, S.K.; Nair, P.B.; Keane, A.J. Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probabilistic Eng. Mech. 2006, 21, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Liao, S. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B. A new homotopy-based approach for structural stochastic analysis. Probabilistic Eng. Mech. 2019, 55, 42–53. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H.; Phoon, K.-K. Homotopy approach for random eigenvalue problem. Int. J. Numer. Methods Eng. 2017, 113, 450–478. [Google Scholar] [CrossRef]
- Koh, C.G.; Tee, K.F.; Quek, S.T. Condensed Model Identification and Recovery for Structural Damage Assessment. J. Struct. Eng. 2006, 132, 2018–2026. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y.; Zhou, X. Structural damage detection based on L1 regularization using natural frequencies and mode shapes. Struct. Control Health Monit. 2018, 25, e2017. [Google Scholar] [CrossRef]
- Lu, Z.-R.; Zhou, J.; Wang, L.; Liu, J. Damage identification from static tests by eigenparameter decomposition and sparse regularization. Struct. Health Monit. 2019, 19, 1351–1374. [Google Scholar] [CrossRef]
- Fan, X.; Li, J. Damage Identification in Plate Structures Using Sparse Regularization Based Electromechanical Impedance Technique. Sensors 2020, 20, 7069. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Huang, B.; Li, C.-Q. Hybrid perturbation-Galerkin methods for structural reliability analysis. Probabilistic Eng. Mech. 2017, 48, 59–67. [Google Scholar] [CrossRef]
- Gaxiola-Camacho, J.R.; Bennett, R.; Guzman-Acevedo, G.M.; Gaxiola-Camacho, I.E. Structural Evaluation of Dynamic and Semi-Static Displacements of the Juarez Bridge Using GPS Technology. Measurement. 2017, 110, 146–153. [Google Scholar]
- Wu, Z.; Huang, B.; Li, Y.; Pu, W. A statistical model updating method of beam structures with random parameters under static load. Appl. Sci. 2017, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- China Academy of Building Research. Standard for Test Method of Concrete Structures (GB/T50152-2012); China Building Industry Press: Beijing, China, 2012. [Google Scholar]
- Ji, X.; Miao, Z.; Kromanis, R. Vision-based measurements of deformations and cracks for RC structure tests. Eng. Struct. 2020, 212, 110508. [Google Scholar] [CrossRef]
- Erdenebat, D.; Waldmann, D. Application of the DAD method for damage localisation on an existing bridge structure using close-range UAV photogrammetry. Eng. Struct. 2020, 218, 110727. [Google Scholar] [CrossRef]
- Shen, P. Design Theory of Concrete Structures; Advanced Education Press: Beijing, China, 2012. [Google Scholar]
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Case 1 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 |
Case 2 | 5 | 0 | 0 | 15 | 10 | 0 | 5 | 0 |
Case 3 | 5 | 10 | 15 | 25 | 20 | 15 | 10 | 5 |
Element Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction ratio | 5% | 10% | 20% | 25% | 20% | 5% | 5% | 10% | 20% | 20% | 10% | 5% |
Method | HDI | FPDI | MC |
---|---|---|---|
CPU time | 534 | 443 | 4158 |
No. | Number of Node | ||||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 8.914 | 17.413 | 21.181 | 23.171 | 21.748 | 16.117 | 8.581 |
2 | 9.785 | 17.528 | 25.648 | 27.824 | 25.138 | 19.632 | 10.251 |
3 | 12.032 | 21.845 | 27.361 | 28.752 | 26.843 | 20.856 | 11.732 |
Mean | 10.243 | 18.929 | 24.730 | 26.582 | 24.576 | 18.868 | 10.188 |
S.D | 1.314 | 2.063 | 2.605 | 2.442 | 2.118 | 2.009 | 1.287 |
COV | 0.128 | 0.109 | 0.105 | 0.092 | 0.086 | 0.107 | 0.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Huang, B.; Tee, K.F.; Zhang, W. A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors 2021, 21, 2366. https://doi.org/10.3390/s21072366
Wu Z, Huang B, Tee KF, Zhang W. A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors. 2021; 21(7):2366. https://doi.org/10.3390/s21072366
Chicago/Turabian StyleWu, Zhifeng, Bin Huang, Kong Fah Tee, and Weidong Zhang. 2021. "A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm" Sensors 21, no. 7: 2366. https://doi.org/10.3390/s21072366
APA StyleWu, Z., Huang, B., Tee, K. F., & Zhang, W. (2021). A Novel Stochastic Approach for Static Damage Identification of Beam Structures Using Homotopy Analysis Algorithm. Sensors, 21(7), 2366. https://doi.org/10.3390/s21072366