SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary
Abstract
:1. Introduction
2. Literature Review
3. Relevant Characteristics of the Magdalena River Estuary
3.1. Climatology of the Magdalena River
- -
- Dry season (December-March): There is a predominance of dry time and generally a reduction in relative humidity.
- -
- Transition time (April-July): This time is produced by the weakening of the trade winds from the northeast and the displacement of the ITCZ to the north [15], which are presented winds with variable directions, coming mainly from the NE quadrant; 80% of the time, the wind speed does not exceed 8 m/s.
3.2. Approach to the Climate Conditions of the Area of Study
- Temperature: The average temperature value registered in this area is 28° with maximums of up to 32 °C [16].
- Clouds: cover is closely linked to general climatic behavior, presenting variability of percentages with respect to the climatic season in which it is found. Dry season ≥ 0% (clear) most of the time. Transition Time ≥ 40% (cloudy) most of the time. Season Humidity ≥ 60% (Mostly cloudy).
- Precipitation: Rainfall begins in April with the beginning of the transition period, however, due to the poorly defined conditioning of the synoptic behavior, there are depressive and anticyclonic zones.
- Humidity: The proximity to the sea, the area of the Isla Salamanca National Natural Park, and the wetlands of the delta of the mouth of the Magdalena River, makes this area have high enough humidity levels, but this humidity is modified by the drying winds and pushes it towards the interior of the region to produce abundant rains in the foothills of the Andes.
3.3. General Fluviography of the Magdalena River
3.4. General Characterization of the River
3.5. General River Hydrology
3.6. Sediment Transport Processes
3.7. Physical Characteristics of the Magdalena River and Its Relationship with the Caribbean Sea
3.8. Considerations Related to the Present Climate Condition
4. Phases for the Development of the SISME Software
4.1. Phase 1: Sensor Location Identification
Installing the Sensors on the Buoys
4.2. Phase 2: Tools Used for Software Development
4.3. Phase 3: Materials and Methods for Construction of the Predictive Model
4.3.1. Data Preparation and Preprocessing
4.3.2. Cleanliness and Quality of Data
- -
- Leave only the data instances between the dates 26 September 2019 and 4 December 2019, in both CSV files.
- -
- Delete from the Boya_3.csv file the column named TempInterna.
- -
- Delete the columns in both CSV files: RF_IN, RF_OUT and Charging regulator.
- -
- Make sure that both files contain the following columns of data: Date, time, Battery Voltage, Conductivity depth max, Conductivity depth medium, Conductivity depth min, Pressure depth max, Pressure depth medium, Pressure depth min, Temperature depth max, Temperature depth mean and min deep temperature (12 columns in total).
- -
- Leave only the data instances sampled in minutes: 00, 15, 30, or 45.
- -
- The other instances were removed because they contain null values.
4.3.3. Organization of Data Collections
- -
- Construction of TWO dataset from raw data, one for each buoy. Each will contain the average values of the instances per day. Those files were named: Boya3_full and Boya7_full.
- -
- Construction of EIGHT dataset (Boya3_00_full, Boya3_15_full, Boya3_30_full and Boya3_45_full, in the same way for Boya7). These datasets will contain the respective averages per day of the instances, calculated from the time frames 00, 15, 30, and 45 min.
- -
- Copy the EIGHT datasets above and only leave the columns: Date and Conductivity prof ma. Such files were named: Boya3_00_conduc, Boya3_15_conduc, Boya3_30_conduc, and Boya3_45_conduc, in the same way for Boya7.
- -
- Create copies of the datasets built in the previous step and name them like this: Boya3_00_conduc will be called Boya3_00_conduc_train, Boya3_30_conduc will be called Boya3_30_conduc_train, Boya3_15_conduc will be called Boya3_15_conduc_test, and Boya3_15_conduc_test will be called Boya3_conduc45_duyactest_duyac45_test_duyac_test45_duyac_test_duyac45. These will be used for training and testing processes. Its distribution is 50% train and 50% test.
5. Contributions
Graphical Analysis of the Behavior of the Model
6. Conclusions and Future Works
- 1st species risk = Alpha = 0.05
- Fisher table: F3.24 (5%) = 3.01–2419.48
- Fisher table: F2.27 (5%) = 3.35–0.532
- -
- It is the first time that 24/7 monitoring with transmission in near real time of the saline intrusion in Bocas de Ceniza has been carried out, providing knowledge to port management from the point of view of maritime security.
- -
- The analysis of saline wedge data versus other parameters will allow us to get closer to understanding the behavior of the river, perhaps predicting the behavior of sediment, thus giving an early warning of low draft in the port of Barranquilla.
- -
- The navigable channel signaling system is used as an underwater monitoring station, optimizing the installed infrastructure.
- -
- By the methodology used, we are knowing the speed of the saline intrusion in the Magdalena river, data that was not known.
- -
- The information collected by the system will allow to significantly adjust any modeling to be carried out in the Magdalena River, improving the quality and precision of the predictions, by having a permanent validation source.
- -
- It can be identified that when the iterations are increased, the quadratic error decreases and the accuracy increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- De Guenni Leilys, B. El Diseño de Redes de Monitoreo: Teoria y Aplicaciones. In Jornadas Internacionales sobre Gestión del Riesgo de Inundaciones y Deslizamientos de Laderas; Universidad Simón Bolívar: Barranquilla, Brazil, 2007; pp. 5–6. [Google Scholar]
- Steele, T.D. Water quality monitoring strategies. Hydrol. Sci. J. 1987, 32, 207–213. [Google Scholar] [CrossRef] [Green Version]
- IDEAM. Estudio Ambiental del Magdalena–Cauca y Elementos Para su Ordenamiento Territorial; Cormagdalena: Bogotá, Colombia, 2001; p. 27. [Google Scholar]
- Resolution 000272. Cargo Transportation along the Magdalena River after of the Two Governments of President Uribe. Available online: www.cormagdalena.gov.co (accessed on 12 March 2021).
- Miller, C.A.; Kelley, A.L. Seasonality and biological forcing modify the diel frequency of nearshore pH extremes in a subarctic Alaskan estuary. Limnol. Oceanogr. 2021. [Google Scholar] [CrossRef]
- Schrandt, M.N.; MacDonald, T.C.; Sherwood, E.T.; Beck, M.W. A multimetric nekton index for monitoring, managing, and communicating ecosystem health status in an urbanized Gulf of Mexico estuary. Ecol. Indic. 2021, 123, 107310. [Google Scholar] [CrossRef]
- Lin, J.; Liu, X.; Lai, T.; He, B. Establishment and application of an evaluation system for the effectiveness of coastal wetland nature reserves management in Guangxi. Acta Ecol. Sin. 2020, 40, 1825–1833. [Google Scholar]
- Patel, K.; Jain, R.; Patel, A.N.; Kalubarme, M.H. Shoreline change monitoring for coastal zone management using multi-temporal Landsat data in Mahi River estuary, Gujarat State. Appl. Geomat. 2021, 1–15. [Google Scholar] [CrossRef]
- Vieira, K.S.; Crapez, M.A.C.; Lima, L.S.; Delgado, J.F.; Brito, E.B.C.C.; Fonseca, E.M.; Aguiar, V.M.C. Evaluation of bioavailability of trace metals through bioindicators in a urbanized estuarine system in southeast Brazil. Environ. Monit. Assess. 2021, 193, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Song, W.; Li, P.; Wang, X.; Wang, G.; Chu, X. Long-term ecological research support protection of coastal wetland ecosystems. Bull. Chin. Acad. Sci. 2020, 35, 218–228. [Google Scholar]
- Chen, C.; Yuxi, S.; Jun, T. Research on Marine Disaster Prevention and Mitigation Information Platform System Based on Big Data. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: England, UK, 2021; Volume 632, p. 022082. [Google Scholar]
- Hsieh, S.H.; Yuan, C.S.; Ie, I.R.; Yang, L.; Lin, H.J.; Hsueh, M.L. In-situ measurement of greenhouse gas emissions from a coastal estuarine wetland using a novel continuous monitoring technology: Comparison of indigenous and exotic plant species. J. Environ. Manag. 2021, 281, 111905. [Google Scholar] [CrossRef]
- Dale, L.L.; Cronin, J.P.; Brink, V.L.; Tirpak, B.E.; Tirpak, J.M.; Pine, W.E., III. Identifying information gaps in predicting winter foraging habitat for juvenile Gulf Sturgeon Acipenser oxyrinchus desotoi. Trans. Am. Fish. Soc. 2020. [Google Scholar] [CrossRef]
- Barthelemy, J.; Amirghasemi, M.; Arshad, B.; Fay, C.; Forehead, H.; Hutchison, N.; Perez, P. Problem-Driven and Technology-Enabled Solutions for Safer Communities: The case of stormwater management in the Illawarra-Shoalhaven region (NSW, Australia). In Handbook of Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–28. [Google Scholar]
- Bernal, G.; Poveda, G.; Roldán, P.; Andrade, C. Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Rev. Acad. Colomb. Cienc. 2006, 30, 195–2008. [Google Scholar]
- CIOH. Climatologia Barranquilla, Boletines Meteorologicos. Available online: www.cioh.org (accessed on 12 March 2021).
- Vernette, G. Estandarización de los Criterios Sedimentológicos Para la Cartografía de la Plataforma Continental; Boletín Científico CIOH: Cartagena, Colombia, 1982; pp. 3–13. [Google Scholar]
- Carson, M.A.; Taylor, C.H.; Grey, B.J. Sediment production in a small Appalachian watershed during spring runoff: The Eaton Basin, 1970–1972. Can. J. Earth Sci. 1973, 10, 1707–1734. [Google Scholar] [CrossRef]
- Bernal, G.; Betancur, J. El Sistema Lagunar de la Ciénaga Grande de Santa Marta en el Contexto Deltaico del río Magdalena, Colombia. In Memorias IX Congreso Nacional de Ciencia y Tecnología del Mar, Medellín; CCO: Bogotá, Colombia, 1994. [Google Scholar]
- Bernal, F.G. Caracterización Geomorfológica de la Llanura Deltaica del río Magdalena con Énfasis en el Sistema Lagunar de la Ciénaga Grande de Santa Marta, Colombia; Boletín de Investigaciones Marinas y Costeras: Santa Marta, Colombia, 1995; 52p. [Google Scholar]
- González, A.M. Análisis de la evolución reciente de la morfología del cauce del Bajo Gallego en las proximidades de Zaragoza: Influencia de las actuaciones humanas en su entorno. Acta Geológica Hispánica 1991, 26, 23–33. [Google Scholar]
- Lorin, J.; Hernández, C.; Rouault, A.; Bottagisio, J. Estudio Sedimentológico de la Plataforma Continental Entre Bocas de Ceniza y Santa Marta; MOPT: Puertos de Colombia, Barranquilla, 1973; 41p. [Google Scholar]
- Martinez, M.; Molina, J.O.; Molina, L.H. Geomorfología y Aspectos Erosivos del Litoral Caribe Colombiano, Sector Bocas de Ceniza-Parque Tayrona; Ministry of Mines and Energy: Bogota, Colombia, 1992; 80p.
- Ecólogos Ltda. Red Hidrográfica del Delta Exterior del Río Magdalena; Boletín de Investigaciones Marinas y Costeras: Santa Marta, Colombia, 1992. [Google Scholar]
- Kaufmann, R.; Hevert, F. El régimen fluviométrico del río Magdalena y su importancia para la Ciénaga Grande de Santa Marta. Mitt. Inst. Colombo-Alemán Investig. Cient. 1973, 7, 121–137. [Google Scholar] [CrossRef]
- Restrepo, J. Dinámica Sedimentaria en Deltas Micromareales–Estratificados de Alta Descarga: Delta del Rio Magdalena (Colombia–Mar Caribe). Ph.D. Thesis, Universidad del Norte, Barranquilla, Atlantico, Colombia, 2014; pp. 80–83. [Google Scholar]
- Velasco, A.; Rodríguez, J.; Castillo, R.; Ortíz, I. Residues of organochlorine and organophosphorus pesticides in sugarcane crop soils and river water. J. Environ. Sci. Health Part B 2012, 47, 833–841. [Google Scholar] [CrossRef]
- Sander, K. Specification of the basic body pattern in insect embryogenesis. In Advances in Insect Physiology; Academic Press: Cambridge, MA, USA, 1976; Volume 12, pp. 125–238. [Google Scholar]
- Cuña e Intrusión Salina. El Heraldo. Available online: https://www.elheraldo.co/columnas-de-opinion/cuna-e-intrusion-salina-244510 (accessed on 12 March 2021).
- Ariza Colpas, P.; Vicario, E.; De-La-Hoz-Franco, E.; Pineres-Melo, M.; Oviedo-Carrascal, A.; Patara, F. Unsupervised human activity recognition using the clustering approach: A review. Sensors 2020, 20, 2702. [Google Scholar] [CrossRef]
- Sekeroglu, B.; Hasan, S.S.; Abdullah, S.M. Comparison of Machine Learning Algorithms for Classification Problems; Arai, K., Kapoor, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 944, pp. 491–499. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access 2017, 5, 20590–20616. [Google Scholar] [CrossRef]
- Hota, S.; Jena, S.K.; Gupta, B.K.; Mishra, D. An Empirical Comparative Analysis of Nav Forecasting using Machine Learning Techniques; Smart Innovation, Systems and Technologies Series; Springer: Berlin/Heidelberg, Germany, 2021; Volume 153, pp. 565–572. [Google Scholar]
- Pinter, G.; Felde, I.; Mosavi, A.; Ghamisi, P.; Gloaguen, R. COVID-19 pandemic prediction for Hungary; A hybrid machine learning approach. Mathematics 2020, 8, 890. [Google Scholar] [CrossRef]
- Kim, G.-B.; Hwang, C.-I.; Shin, H.-J.; Choi, M.-R. Applicability of groundwater recharge rate estimation method based on artificial neural networks in unmeasured areas. J. Geol. Soc. Korea 2019, 55, 693–701. [Google Scholar] [CrossRef]
- Von Schleinitz, J.; Worle, L.; Graf, M.; Schröder, A.; Trutschnig, W. Analysis of Race Car Drivers’ Pedal Interactions by means of Supervised Learning. IEEE Intell. Transp. Syst. Conf. ITSC 2019, 8917120, 4152–4157. [Google Scholar]
- Laib, O.; Khadir, M.T.; Mihaylova, L. Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks. Energy 2019, 177, 530–542. [Google Scholar] [CrossRef]
- Weytjens, H.; Lohmann, E.; Kleinsteuber, M. Cash Flow Prediction: MLP and LSTM Compared to ARIMA and Prophet. Electron. Commer. Res. 2019. [Google Scholar] [CrossRef]
- Mohammed, B.; Hamdan, M.; Bassi, J.S.; Jamil, H.A.; Khan, S.; Elhigazi, A.; Marsono, M.N. Edge Computing Intelligence Using Robust Feature Selection for Network Traffic Classification in Internet-of-Things. IEEE Access 2020, 8, 224059–224070. [Google Scholar] [CrossRef]
- Hamdan, M.; Mohammed, B.; Humayun, U.; Abdelaziz, A.; Khan, S.; Ali, M.A.; Marsono, M.N. Flow-aware elephant flow detection for software-defined networks. IEEE Access 2020, 8, 72585–72597. [Google Scholar] [CrossRef]
- Dar, B.K.; Shah, M.A.; Islam, S.U.; Maple, C.; Mussadiq, S.; Khan, S. Delay-aware accident detection and response system using fog computing. IEEE Access 2019, 7, 70975–70985. [Google Scholar] [CrossRef]
Latitude | Length |
---|---|
−74.819661 W | 11.128976 N |
−74.921967 W | 11.128557 N |
−74.921548 W | 11.056439 N |
−74.813092 W | 11.056020 N |
Geographical Position | ||
---|---|---|
Buoy 1 | LAT. −74.845796 | LONG. 11.084671 |
Buoy 6 | LAT. −74.838389 | LONG. 11.058955 |
File | Boya_3.csv | Boya_7.csv |
---|---|---|
Fields (data columns) | Date, time, Battery Voltage, Conductivity depth max, Conductivity depth average, Conductivity depth min, Temperature Internal, Pressure depth max, Pressure depth average, Pressure depth min, RF IN, RF OUT, Charging Regulator, Temperature depth max, Temperature depth average and Temperature prof min. | Date, time, Battery Voltage, Conductivity depth max, Conductivity depth average, Conductivity depth min, Pressure depth max, Pressure depth average, Pressure depth min, RF IN, RF OUT, Charging Regulator, Temperature depth max, Temperature depth average and Temperature depth min. |
Number of fields | 16 | 15 |
Time frame | From 18 September 2019 at 12:06:17 pm to 5 December 2019 at 1:31:45 pm | From 25 September 2019 at 10:58:38 am to 5 December 2019 at 1:39:39 pm. |
Number of instances (rows of data) | 15.683 | 13.988 |
Files | Boya_3_00_conduc_train.csv Boya_3_30_conduc_train.csv Boya_7_00_conduc_train.csv Boya_7_30_conduc_train.csv | Boya_3_15_conduc_test.cvs Boya_3_45_conduc_test.cvs Boya_7_15_conduc_test.cvs Boya_7_45_conduc_test.cvs |
Fields (data columns) | Date Maximum depth conductivity | Date Maximum depth conductivity |
Number of fields | 2 | 2 |
Time frame | From 09/26/2019 to 12/4/2019 | From 09/26/2019 to 12/4/2019 |
Number of instances (rows of data) | 70 | 70 |
No. Scenario | No. Buoy | Training Dataset | Test Dataset |
---|---|---|---|
1 | 3 | Boya_3_00_conduc_train.csv | Boya_3_15_conduc_test.cvs |
2 | Boya_3_30_conduc_train.csv | Boya_3_45_conduc_test.cvs | |
3 | 4 | Boya_7_00_conduc_train.csv | Boya_7_15_conduc_test.cvs |
4 | Boya_7_30_conduc_train.csv | Boya_7_45_conduc_test.cvs |
No. Scenario | Metrics | Real | Prediction | Scenario |
---|---|---|---|---|
1 | Mean | 0.0613490 | 0.0623860 | −0.0010370 |
Standard deviation | 0.0126820 | 0.0118150 | 0.0043640 | |
2 | Mean | 0.061465 | 0.062881 | −0.001416 |
Standard deviation | 0.012894 | 0.010674 | 0.006691 | |
3 | Mean | 0.103661 | 0.103459 | 0.000201 |
Standard deviation | 0.014309 | 0.013157 | 0.003998 | |
4 | Mean | 0.103643 | 0.103588 | 0.000054 |
Standard deviation | 0.014406 | 0.012566 | 0.005294 |
Origin of the Variation | Sum of Squares | Degrees of Freedom | Middle Square | F Ratio |
---|---|---|---|---|
Total | 0.007651 | 27 | ||
Treatments | 0.007625612 | 3 | 0.002541871 | 2419.48221 |
Residual | 0.000025 | 24 | 1.05058 × 10−6 |
Maximum Depth Conductivity (mS/cm) | ||||
---|---|---|---|---|
Date | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
21/11/19 | 0.045417 | 0.044500 | 0.102292 | 0.102167 |
22/11/19 | 0.047667 | 0.045750 | 0.097958 | 0.098542 |
23/11/19 | 0.047167 | 0.046833 | 0.093708 | 0.094875 |
24/11/19 | 0.048208 | 0.048542 | 0.086833 | 0.085583 |
25/11/19 | 0.050667 | 0.050333 | 0.089375 | 0.088708 |
26/11/19 | 0.047667 | 0.047000 | 0.084458 | 0.085708 |
27/11/19 | 0.043667 | 0.042667 | 0.082000 | 0.082375 |
28/11/19 | 0.043333 | 0.042667 | 0.079083 | 0.078083 |
29/11/19 | 0.041000 | 0.043333 | 0.075792 | 0.075250 |
30/11/19 | 0.042333 | 0.041667 | 0.074417 | 0.074750 |
1/12/19 | 0.041917 | 0.043125 | 0.074583 | 0.073667 |
2/12/19 | 0.044917 | 0.044875 | 0.073958 | 0.074250 |
3/12/19 | 0.048375 | 0.047417 | 0.073917 | 0.073292 |
4/12/19 | 0.048083 | 0.046917 | 0.073667 | 0.073292 |
5/12/19 | 0.046493 | 0.042732 | 0.076291 | 0.075819 |
6/12/19 | 0.046408 | 0.043084 | 0.077089 | 0.076664 |
7/12/19 | 0.044692 | 0.043668 | 0.076857 | 0.076707 |
8/12/19 | 0.043904 | 0.043828 | 0.076837 | 0.077289 |
9/12/19 | 0.042995 | 0.042498 | 0.077129 | 0.077586 |
10/12/19 | 0.042284 | 0.044327 | 0.077053 | 0.077652 |
11/12/19 | 0.043292 | 0.045224 | 0.076775 | 0.077708 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariza-Colpas, P.P.; Ayala-Mantilla, C.E.; Shaheen, Q.; Piñeres-Melo, M.A.; Villate-Daza, D.A.; Morales-Ortega, R.C.; De-la-Hoz-Franco, E.; Sanchez-Moreno, H.; Aziz, B.S.; Afzal, M. SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary. Sensors 2021, 21, 2374. https://doi.org/10.3390/s21072374
Ariza-Colpas PP, Ayala-Mantilla CE, Shaheen Q, Piñeres-Melo MA, Villate-Daza DA, Morales-Ortega RC, De-la-Hoz-Franco E, Sanchez-Moreno H, Aziz BS, Afzal M. SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary. Sensors. 2021; 21(7):2374. https://doi.org/10.3390/s21072374
Chicago/Turabian StyleAriza-Colpas, Paola Patricia, Cristian Eduardo Ayala-Mantilla, Qaisar Shaheen, Marlon Alberto Piñeres-Melo, Diego Andrés Villate-Daza, Roberto Cesar Morales-Ortega, Emiro De-la-Hoz-Franco, Hernando Sanchez-Moreno, Butt Shariq Aziz, and Mehtab Afzal. 2021. "SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary" Sensors 21, no. 7: 2374. https://doi.org/10.3390/s21072374
APA StyleAriza-Colpas, P. P., Ayala-Mantilla, C. E., Shaheen, Q., Piñeres-Melo, M. A., Villate-Daza, D. A., Morales-Ortega, R. C., De-la-Hoz-Franco, E., Sanchez-Moreno, H., Aziz, B. S., & Afzal, M. (2021). SISME, Estuarine Monitoring System Based on IOT and Machine Learning for the Detection of Salt Wedge in Aquifers: Case Study of the Magdalena River Estuary. Sensors, 21(7), 2374. https://doi.org/10.3390/s21072374