Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Review of Template Matching Method for Image Registration
2.2. Corner Detection
2.3. Optical Flow
2.4. 2D Image Transformation
3. Study Area and Application
3.1. Study Area
3.2. Data Collection Methods and Results
3.3. Application Results
4. Verification Methods and Results
4.1. Verification Method
4.2. Verification Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P.; et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model. 2010, 221, 46–58. [Google Scholar] [CrossRef]
- Su, T.C.; Chou, H.T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Fráter, T.; Juzsakova, T.; Lauer, J.; Dióssy, L.; Rédey, A. Unmanned Aerial Vehicles in Environmental Monitoring—An Efficient Way for Remote Sensing. J. Environ. Sci. Eng. A 2015, 4, 85–91. [Google Scholar]
- Carbonneau, P.; Fonstad, M.A.; Marcus, W.A.; Dugdale, S.J. Making riverscapes real. Geomorphology 2012, 137, 74–86. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Brekke, C.; Solberg, A.H.S. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Fausch, K.D.; Torgersen, C.E.; Baxter, C.V.; Li, H.W. Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 2002, 52, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Mertes, L.A.K. Remote sensing of riverine landscapes. Freshw. Biol. 2002, 47, 799–816. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Remote sensing of rivers: The emergence of a subdiscipline in the river sciences. Earth Surf. Process. Landf. 2010, 35, 1867–1872. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of algal blooms: An overview with case studies. J. Coast. Res. 2012, 28, 34–43. [Google Scholar] [CrossRef]
- Tamminga, A.; Hugenholtz, C.; Eaton, B.; Lapointe, M. Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res. Appl. 2015, 31, 379–391. [Google Scholar] [CrossRef]
- Marcus, A.W. Remote Sensing of the Hydraulic Environment in Gravel-Bed Rivers. In Gravel-Bed Rivers: Processes, Tools, Environments; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 259–285. [Google Scholar]
- Carbonneau, P.E.; Piégay, H. (Eds.) Fluvial Remote Sensing for Science and Management; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9781119940791. [Google Scholar]
- Rhee, D.S.; Do Kim, Y.; Kang, B.; Kim, D. Applications of unmanned aerial vehicles in fluvial remote sensing: An overview of recent achievements. KSCE J. Civ. Eng. 2018, 22, 588–602. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Thakar, K.; Kapadia, D.; Natali, F.; Sarvaiya, J. Implementation and analysis of template matching for image registration on DevKit-8500D. Optik. 2017, 130, 935–944. [Google Scholar] [CrossRef]
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Dan, T.; Yang, Y. Multi-Temporal Remote Sensing Image Registration Using Deep Convolutional Features. IEEE Access 2018, 6, 38544–38555. [Google Scholar] [CrossRef]
- Wang, S.; Quan, D.; Liang, X.; Ning, M.; Guo, Y.; Jiao, L. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 2018, 145, 148–164. [Google Scholar] [CrossRef]
- Sedaghat, A.; Mohammadi, N. High-resolution image registration based on improved SURF detector and localized GTM. Int. J. Remote Sens. 2019, 40, 2576–2601. [Google Scholar] [CrossRef]
- Dawn, S.; Saxena, V.; Sharma, B. Remote sensing image registration techniques: A survey. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2010; Volume 6134 LNCS, pp. 103–112. [Google Scholar]
- Feng, R.; Du, Q.; Li, X.; Shen, H. Robust registration for remote sensing images by combining and localizing feature- and area-based methods. ISPRS J. Photogramm. Remote Sens. 2019, 151, 15–26. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988; pp. 147–151. [Google Scholar]
- Sánchez, J.; Monzón, N.; Salgado, A. An analysis and implementation of the harris corner detector. Image Process. Line 2018, 8, 305–328. [Google Scholar] [CrossRef]
- Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of Optical Flow Techniques. Int. J. Comput. Vis. 1994, 12, 43–77. [Google Scholar] [CrossRef]
- Glaeser, R.M.; Hall, R.J.; Zhu, Y.; Kriegman, D.J.; Carragher, B.; Mouche, F.; Bern, M.; Bajaj, C.; Fellmann, D.; De Haas, F.; et al. Automatic particle selection: Results of a comparative study. J. Struct. Biol. 2004, 145, 3–14. [Google Scholar]
- Douini, Y.; Riffi, J.; Mahraz, M.A.; Tairi, H. Solving sub-pixel image registration problems using phase correlation and Lucas-Kanade optical flow method. Intell. Syst. Comput. Vis. ISCV 2017. [Google Scholar] [CrossRef]
- Du, B.; Cai, S.; Wu, C. Object Tracking in Satellite Videos Based on a Multiframe Optical Flow Tracker. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3043–3055. [Google Scholar] [CrossRef] [Green Version]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.P. Fast Template Matching Template. Pattern Recognit. 1995, 10, 120–123. [Google Scholar]
- Briechle, K.; Hanebeck, U.D. Template matching using fast normalized cross correlation. Opt. Pattern Recognit. XII 2001, 4387, 95–102. [Google Scholar]
- Jiang, H.; Yu, S.X. Linear solution to scale and rotation invariant object matching. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, Miami Beach, FL, USA, 20–25 June 2009; IEEE: New York, NY, USA, 2009; pp. 2474–2481. [Google Scholar]
- Yan, B.; Xiao, L.; Zhang, H.; Xu, D.; Ruan, L.; Wang, Z.; Zhang, Y. An adaptive template matching-based single object tracking algorithm with parallel acceleration. J. Vis. Commun. Image Represent. 2019, 64. [Google Scholar] [CrossRef]
- Moravec, H. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. In Tech. Report CMU-RI-TR-80-03; Stanford Univ CA Dept of Computer Science: Stanford, CA, USA, 1980. [Google Scholar]
- Horn, B.K.; Schunck, B.G. Determining Optical Flow. In Proceedings of the Techniques and Applications of Image Understanding; Pearson, J.J., Ed.; SPIE: Bellingham, WA, USA, 1981; Volume 0281, pp. 319–331. [Google Scholar]
- Beauchemin, S.S.; Barron, J.L. The Computation of Optical Flow. ACM Comput. Surv. (CSUR) 1995, 27, 433–466. [Google Scholar] [CrossRef]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
Method (Elapsed Time) | Error | |||||
---|---|---|---|---|---|---|
Minimum | Maximum | RMSE | ||||
Pixels | Actual (m) | Pixels | Actual (m) | Pixels | Actual (m) | |
Just-georeferenced | 8.15 | 0.1621 | 92.15 | 1.843 | 11.73 | 0.235 |
Template matching (157.2 s) | 0.03 | 0.001 | 5.70 | 0.154 | 4.43 | 0.089 |
Optical flow (19.5 s) | 0.05 | 0.001 | 3.24 | 0.065 | 0.94 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, H.; Kim, D. Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm. Sensors 2021, 21, 2407. https://doi.org/10.3390/s21072407
You H, Kim D. Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm. Sensors. 2021; 21(7):2407. https://doi.org/10.3390/s21072407
Chicago/Turabian StyleYou, Hojun, and Dongsu Kim. 2021. "Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm" Sensors 21, no. 7: 2407. https://doi.org/10.3390/s21072407
APA StyleYou, H., & Kim, D. (2021). Development of an Image Registration Technique for Fluvial Hyperspectral Imagery Using an Optical Flow Algorithm. Sensors, 21(7), 2407. https://doi.org/10.3390/s21072407