Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Overview
2.3. Instrumentation
2.4. Protocol
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Reliability
3.2. Validity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girard, J.; Feng, B.; Chapman, C. The effects of high-intensity interval training on athletic performance measures: A systematic review. Phys. Ther. Rev. 2018, 23, 151–160. [Google Scholar] [CrossRef]
- Raspovic, A.; Landorf, K.; Gazarek, J.; Stark, M. Reduction of peak plantar pressures in patients with peripheral neuropathy: An evaluation of the DH Pressure- Relief™ Shoe. J. Foot Ankle Res. 2011, 4, O38. [Google Scholar] [CrossRef] [Green Version]
- Nagano, H.; Begg, R.K. Shoe-Insole Technology for Injury Prevention in Walking. Sensors 2018, 18, 1468. [Google Scholar] [CrossRef] [Green Version]
- David, V.; Forjan, M.; Martinek, J.; Kotzian, S.; Jagos, H.; Rafolt, D. Evaluating wearable multimodal sensor insoles for motion-pattern measurements in stroke rehabilitation—A pilot study. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1543–1548. [Google Scholar]
- Roth, N.; Martindale, C.F.; Eskofier, B.M.; Gaßner, H.; Kohl, Z.; Klucken, J. Synchronized Sensor Insoles for Clinical Gait Analysis in Home-Monitoring Applications. Curr. Dir. Biomed. Eng. 2018, 4, 433–437. [Google Scholar] [CrossRef]
- Santarmou, E.; Dozza, M.; Lannocca, M.; Chiari, L.; Cappello, A. Insole pressure sensor-based audio-biofeedback for balance improvement. Gait Posture 2006, 24, S30–S31. [Google Scholar] [CrossRef]
- Walsh, L.; Muaremi, A.; Stanton, T.; Blauth, M.; Clay, I.; Schieker, M.; Laurent, D. Quantifying Functional Difference in Centre of Pressure Post Achilles Tendon Rupture using Sensor Insoles. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3155–3158. [Google Scholar]
- Ramanathan, A.; Kiran, P.; Arnold, G.; Wang, W.; Abboud, R. Repeatability of the Pedar-X® in-shoe pressure measuring system. Foot Ankle Surg. 2010, 16, 70–73. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Putti, A.; Arnold, G.; Cochrane, L.; Abboud, R. The Pedar® in-shoe system: Repeatability and normal pressure values. Gait Posture 2007, 25, 401–405. [Google Scholar] [CrossRef]
- Price, C.; Parker, D.; Nester, C. Validity and repeatability of three in-shoe pressure measurement systems. Gait Posture 2016, 46, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Hurkmans, H.; Bussmann, J.; Selles, R.; Horemans, H.; Benda, E.; Stam, H.; Verhaar, J. Validity of the Pedar Mobile system for vertical force measurement during a seven-hour period. J. Biomech. 2006, 39, 110–118. [Google Scholar] [CrossRef]
- Braun, B.J.; Veith, N.T.; Hell, R.; Döbele, S.; Roland, M.; Rollmann, M.; Holstein, J.H.; Pohlemann, T. Validation and reliability testing of a new, fully integrated gait analysis insole. J. Foot Ankle Res. 2015, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nagahara, R.; Morin, J.-B. Sensor insole for measuring temporal variables and vertical force during sprinting. In Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology; SAGE Publications: Thousand Oaks, CA, USA, 2018; Volume 232, pp. 369–374. [Google Scholar]
- Stöggl, T.; Martiner, A. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. J. Sports Sci. 2017, 35, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oerbekke, M.S.; Stukstette, M.J.; Schütte, K.; de Bie, R.A.; Pisters, M.F.; Vanwanseele, B. Concurrent validity and reliability of wireless instrumented insoles measuring postural balance and temporal gait parameters. Gait Posture 2017, 51, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Secher, N.H. Physiological and Biomechanical Aspects of Rowing. Sports Med. 1993, 15, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Smith, R. Over 50 Years of Researching Force Profiles in Rowing: What Do We Know? Sports Med. 2018, 48, 2703–2714. [Google Scholar] [CrossRef]
- An, W.W.; Wong, V.; Cheung, R.T. Lower limb reaction force asymmetry in rowers with and without a history of back injury. Sports Biomech. 2015, 14, 375–383. [Google Scholar] [CrossRef]
- Buckeridge, E.M.; Bull, A.M.; McGregor, A.H. Foot force production and asymmetries in elite rowers. Sports Biomech. 2014, 13, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Buckeridge, E.M.; Bull, A.M.J.; McGregor, A.H. Biomechanical determinants of elite rowing technique and performance. Scand. J. Med. Sci. Sports 2015, 25, e176–e183. [Google Scholar] [CrossRef] [PubMed]
- Černe, T.; Kamnik, R.; Munih, M. The measurement setup for real-time biomechanical analysis of rowing on an ergometer. Measurement 2011, 44, 1819–1827. [Google Scholar] [CrossRef]
- Greene, A.J.; Sinclair, P.J.; Dickson, M.H.; Colloud, F.; Smith, R.M. The effect of ergometer design on rowing stroke mechanics. Scand. J. Med. Sci. Sports 2013, 23, 468–477. [Google Scholar] [CrossRef]
- Pudlo, P.; Pinti, A.; Lepoutre, F.X. Experimental laboratory apparatus to analyze kinematics and 3D kinetics in rowing. Sports Eng. 2005, 8, 39–46. [Google Scholar] [CrossRef]
- Baca, A.; Kornfeind, P.; Heller, M. Comparison of foot-stretcher force profiles between on-water and ergometer rowing. In Proceeding of the 24 International Symposium on Biomechanics in Sports, Salzburg, Austria, 14–18 June 2006. [Google Scholar]
- Smith, R.M.; Loschner, C. Biomechanics feedback for rowing. J. Sports Sci. 2002, 20, 783–791. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Harrison, A.; Robinson, M.A.; Vanrenterghem, J.; Bargary, N.; Smith, R.; Cobley, S.; Draper, C.; Donnelly, C.; Pataky, T. A force profile analysis comparison between functional data analysis, statistical parametric mapping and statistical non-parametric mapping in on-water single sculling. J. Sci. Med. Sport 2018, 21, 1100–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moticon ReGo AG. Sensor Insoles. 2020. Available online: https://www.moticon.de/insole3-overview/ (accessed on 25 June 2020).
- Novel.de. Pedar®: Dynamic Pressure Distribution Inside the Footwear. 2020. Available online: https://www.novel.de/products/pedar/ (accessed on 3 May 2019).
- Rowing Australia. Ergometer Drag Factors 2018–2019 Onwards. 2019. Available online: https://rowingaustralia.com.au/tony-rice/rowing-testing-protocols/ergometer-drag-factors-2018-2019-onwards/ (accessed on 15 May 2019).
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
N | Mean (SD) | Diff. in Mean (±95%CI) | ES-Cohen’s d | SEM | ICC (2,1) (Ln) (95%CI) | TE (Raw) | TE as %CV (Ln) | Sig. (2-Tailed) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | p | M | p | M | p | M | p | M | p | M | p | M | p | M | p | |||||
1 | 2 | 1 | 2 | |||||||||||||||||
Fav (N) | L | 19 | 255.1 (77.5) | 241.5 (63.1) | 149.5 (22.4) | 145.7 (24.7) | 13.7 (±18.1) | 3.9 (±6.4) | 0.19 | 0.16 | 8.6 | 3.1 | 0.90 (0.75–0.96) | 0.85 (0.65–0.95) | 26.6 | 9.4 | 11.5 | 7.1 | 0.13 | 0.22 |
R | 19 | 249.8 (56.4) | 253.0 (45.0) | 173.2 (33.1) | 169.5 (31.6) | −3.2 (±20.7) | 3.7 (±11.6) | −0.06 | 0.10 | 9.8 | 5.5 | 0.62 (0.24–0.83) | 0.79 (0.53–0.91) | 30.3 | 17.1 | 14.4 | 10.7 | 0.75 | 0.52 | |
T | 19 | 505.0 (125.4) | 494.5 (94.5) | 322.7 (46.7) | 315.2 (52.2) | 10.5 (±28.8) | 7.5 (±15.3) | 0.10 | 0.15 | 13.7 | 7.3 | 0.81 (0.58–0.92) | 0.82 (0.59–0.93) | 42.2 | 22.5 | 11.3 | 7.5 | 0.46 | 0.32 | |
Fpeak (N) | L | 19 | 736.3 (198.2) | 688.8 (134.7) | 471.4 (87.5) | 462.6 (72.4) | 47.5 (±42.0) | 8.8 (±26.0) | 0.29 | 0.11 | 20.0 | 12.4 | 0.91 (0.78–0.96) | 0.82 (0.59–0.93) | 61.7 | 38.1 | 7.5 | 8.3 | 0.35 | 0.48 |
R | 19 | 704.6 (124.6) | 690.2 (82.8) | 502.6 (55.6) | 504.7 (88.1) | 14.4 (±47.8) | −2.1 (±37.1) | 0.14 | −0.03 | 22.8 | 17.7 | 0.57 (0.18–0.81) | 0.39 (−0.07–0.71) | 70.2 | 54.4 | 11.2 | 13.5 | 0.54 | 0.91 | |
T | 19 | 1440.9 (313.2) | 1379.0 (193.6) | 974.0 (130.9) | 967.3 (138.8) | 61.8 (±80.7) | 6.7 (±59.8) | 0.24 | 0.05 | 38.4 | 28.4 | 0.82 (0.60–0.93) | 0.61 (0.22–0.83) | 118.4 | 87.7 | 8.4 | 9.7 | 0.13 | 0.82 | |
Pav (kPa) | L | 19 | 13.8 (4.4) | 13.1 (3.6) | 9.0 (1.4) | 9.3 (3.2) | 0.8 (±0.9) | −0.3 (±1.3) | 0.19 | −0.15 | 0.4 | 0.6 | 0.92 (0.80–0.97) | 0.65 (0.28–0.85) | 1.4 | 1.9 | 10.5 | 14.5 | 0.11 | 0.57 |
R | 19 | 13.2 (3.4) | 13.3 (2.7) | 10.3 (1.8) | 10.5 (2.1) | −0.1 (±1.1) | −0.2 (±0.8) | −0.04 | −0.10 | 0.5 | 0.4 | 0.71 (0.38–0.88) | 0.70 (0.38–0.87) | 1.6 | 1.2 | 14.3 | 11.4 | 0.81 | 0.62 | |
T | 19 | 27.0 (7.3) | 26.4 (5.7) | 19.3 (2.6) | 19.8 (4.7) | 0.6 (±1.5) | −0.5 (±1.9) | 0.10 | −0.14 | 0.7 | 0.9 | 0.85 (0.66–0.94) | 0.61 (0.23–0.83) | 2.2 | 2.8 | 11.0 | 12.3 | 0.40 | 0.56 | |
Ppeak (kPa) | L | 19 | 97.2 (11.8) | 98.8 (10.8) | 335.3 (78.4) | 322.2 (82.5) | −1.6 (±4.5) | 13.0 (±30.6) | −0.14 | 0.16 | 2.1 | 14.6 | 0.69 (0.36–0.87) | 0.72 (0.41–0.88) | 6.5 | 45.0 | 6.8 | 14.6 | 0.47 | 0.38 |
R | 19 | 91.2 (13.1) | 89.6 (12.7) | 260.7 (94.9) | 287.5 (110.3) | 1.6 (±3.9) | −26.8 (±24.8) | 0.12 | −0.26 | 1.9 | 11.8 | 0.81 (0.57–0.92) | 0.90 (0.76–0.96) | 5.8 | 36.4 | 6.6 | 12.4 | 0.41 | 0.43 | |
T | 19 | 188.4 (22.6) | 188.4 (20.9) | 595.9 (160.8) | 609.7 (182.2) | 0.0 (±7.3) | −13.8 (±48.4) | 0.00 | −0.08 | 3.5 | 23.1 | 0.77 (0.49–0.90) | 0.86 (0.67–0.94) | 10.7 | 71.1 | 5.9 | 11.7 | 0.99 | 0.56 |
N | Mean (SD) | Diff in Mean (±95% CI) | %Bias (±95% CI) (Ln) | ES-Cohen’s d | SEM | TE | TE (as CV%) (Ln) | Pearson’s Correlation (95% CI) (Ln) | 95% LoA | Sig. (2-Tailed) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | p | Raw | as % (Ln) | |||||||||||
Fav (N) | L | 38 | 248.3 (70.1) | 147.6 (23.4) | 100.7 (±23.5) | 87.7% (±24.5%) | 2.16 | 11.6 | 23.5 | 17.9 | 0.15 (−0.18–0.45) | 140.0 | 14.2 | <0.001 * |
R | 38 | 251.4 (50.3) | 171.4 (35.0) | 80.1 (±19.2) | 59.7% (±17.1%) | 1.88 | 9.5 | 35.3 | 23.7 | 0.10 (−0.23–0.41) | 114.45 | 11.7 | <0.001 * | |
T | 38 | 499.7 (109.6) | 319.0 (49.0) | 180.8 (±39.6) | 72.6% (±18.4%) | 2.28 | 19.5 | 49.7 | 17.7 | 0.03 (−0.29–0.34) | 236.0 | 10.2 | <0.001 * | |
Fpeak (N) | L | 38 | 712.6 (168.9) | 467.0 (79.3) | 245.6 (±53.3) | 66.5% (±14.1%) | 1.98 | 26.3 | 76.3 | 18.3 | 0.37 (0.05–0.61) | 317.9 | 7.8 | <0.001 * |
R | 38 | 697.4 (104.6) | 503.7 (72.7) | 193.7 (±37.6) | 46.8% (±10.6%) | 2.19 | 18.5 | 72.1 | 16.8 | 0.21 (−0.12–0.49) | 224.0 | 6.7 | <0.001 * | |
T | 38 | 1410.0 (258.8) | 970.7 (133.1) | 439.3 (±84.9) | 55.8% (±10.9%) | 2.24 | 41.9 | 130.3 | 14.7 | 0.30 (−0.02–0.57) | 506.2 | 5.7 | <0.001 * | |
Pav (kPa) | L | 38 | 13.4 (4.0) | 9.1 (2.5) | 4.3 (±1.4) | 55.2% (±21.1%) | 1.34 | 0.7 | 2.5 | 23.9 | 0.24 (−0.09–0.52) | 8.5 | 35.5 | <0.001 * |
R | 38 | 13.2 (3.0) | 10.4 (1.9) | 2.8 (±1.2) | 29.1% (±14.5%) | 1.13 | 0.6 | 1.9 | 21.1 | 0.06 (−0.27–0.37) | 7.0 | 28.7 | <0.001 * | |
T | 38 | 26.7 (6.5) | 19.6 (3.8) | 7.1 (±2.4) | 40.9% (±15.9%) | 1.39 | 1.2 | 3.8 | 19.7 | 0.11 (−0.22–0.42) | 14.4 | 21.3 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barratt, G.K.; Bellenger, C.; Robertson, E.Y.; Lane, J.; Crowther, R.G. Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer. Sensors 2021, 21, 2418. https://doi.org/10.3390/s21072418
Barratt GK, Bellenger C, Robertson EY, Lane J, Crowther RG. Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer. Sensors. 2021; 21(7):2418. https://doi.org/10.3390/s21072418
Chicago/Turabian StyleBarratt, Georgina Kate, Clint Bellenger, Eileen Yule Robertson, Jason Lane, and Robert George Crowther. 2021. "Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer" Sensors 21, no. 7: 2418. https://doi.org/10.3390/s21072418
APA StyleBarratt, G. K., Bellenger, C., Robertson, E. Y., Lane, J., & Crowther, R. G. (2021). Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer. Sensors, 21(7), 2418. https://doi.org/10.3390/s21072418