Fast Gating for Raman Spectroscopy
Abstract
:1. Introduction
2. Fast Gating: Expected Performances
3. Optical Kerr Gate
- The refractive index changes in proportion to the applied electric field, in which case the effect is known as the linear electro-optic effect or the Pockels effect. The linear electro-optical effect can be described in terms of a nonlinear polarization given by:
- The refractive index changes in proportion to the square of the applied electric field, in which case the effect is known as the quadratic electro-optic effect or the Kerr effect. This occurs in centrosymmetric materials (i.e., they display inversion symmetry), where the lowest-order change in the refractive index depends quadratically on the strength of the applied field. It can be described in terms of a nonlinear polarization given by:Due to dependence by , the non-linearity can be induced by placing the medium inside DC or AC electric fields (e.g., a sort of capacitor can be used); otherwise, the electric field can be generated by a strong radiation (e.g., a laser beam). The latter, usually known as the optical Kerr effect, allows one to improve the performances, and lower gating windows (e.g., ps) could be achieved.
- Lenses, where the the focal length can be varied changing the refractive index;
- Prisms, where the beam deviation is controllable by changing the refractive index, becoming devices capable of scanning;
- Phase modulators, where light transmitted undergoes a controllable phase shift;
- Wave retarders, where anisotropic crystals may become able to change the polarization properties of the beam crossing the medium;
- Optical switches, where wave retarders between two crossed polarizers cause transmission of the whole device to be dependent on the phase shift introduced.
3.1. Nonlinear Refractive Index
3.2. Experimental Implementation
- The polarizer (e.g., a polarizing beam splitter—PBS).
- The polarizer .
- The nonlinear medium.
- A laser able to emit at two different wavelengths, the first to excite the target (i.e., Raman Signal) and the second to induce the Kerr effect.
- Even though the same laser is usually exploited to obtain the Kerr effect and for the Raman signal, for reasons of costs and synchronization (in this case, doubled-frequency radiation should be generated), there is not a theoretical constraint on the use of different wavelength combinations. However, further assessments should be considered in order to get as many Raman signals as possible. A low absorbance of the active medium in the chosen range, and a Raman pump close to the UV to increase the cross-section would be suitable. A solution commercially available could involve a gating pulse at 1064 nm and a Raman pump at 532 nm, i.e., a gated pulse close to 532 nm or both the gating and gated pulses at 532 nm. In the present paper we will focus on this easier configuration.
- The active medium could be a liquid (CS) [17,18,23,24] or a solid (TiO, CdS, ZnO, bismuth glass) [19,20]. Several devices were optimized in order to exploit the TiO by varying the size and the configuration of the active medium, which could be homogenous or variously dispersed. Nevertheless, the choice of the active medium is based on the value of the nonlinear refractive index which should be as high as possible.
3.3. Kerr Gate Efficiency
3.4. Setup Design
- PRR = 100 MHz, T , W > 0.1 W, E > 1 nJ— with d = m and 1% with d = m.
- PRR = 40 MHz, T < 9 ps, W > 0.06 W, E > 1.5 nJ— with d = m and with d = m.
- PRR = 1–80 MHz, T = 88–96 ps, W = 0.0063–0.34 W, E = 4.3–6.3 nJ— = 9–15% with d = m and 1% with d = m.
- PRR = 80 MHz, T < 3 ps, W > 0.7 W, E > 8.5 nJ—3% even with d = m.
- A setup devoted to TRRS should be based on a gated pulse of short wavelength in order to increase the cross-section.
- A low PRR should be preferred in order to obtain high pulse energy.
- Increasing the length of the active medium L does not lead to exceptional efficiency improvements: In fact, increasing the size could ease the presence of local inhomogeneities, higher absorbance, lower signal strength and problems related to the interfaces between the different slices. The latter happens when several layers of active medium are placed in series.
- Should the laser power exceed 300 mW, many setups are based on gating pulses generated with a laser at 1064 or 808 nm so that it is easier to find systems with the necessary technical features.
- Working with a large section beam, i.e., mm, short pulses are needed: . In this case the beam homogeneity represents a relevant issue. A solution could be represented by commercial beam shapers, able to make the beam energy density as constant as possible, e.g., “top hat beam shaping lenses” in order to reach values close to the diffraction limit [38].
3.5. Uncertainties and Their Consequences in Real Systems
3.6. Ideal and Real Gate
3.7. Kerr-Gating: Conclusions
4. Time-Gated Single Photon Avalanche Photodiode (TG-SPAD)
4.1. Introduction and Theory
- Dead time: As depicted in Figure 13, during the time when a SPAD undergoes photon absorption, carrier multiplication, quenching and recharge, the SPAD is not able to detect a subsequent photon. Dead time is defined as the time it takes to complete a detection cycle, which determines the maximum counting rate of a SPAD. Therefore, fast quenching and recharge circuits are required for high-speed applications.
- Dark count rate (DCR): DCR is defined as the number of counts per second when the SPAD is in the dark. A major source of DCR in a CMOS SPAD at room temperature is the thermal generation of free carriers, and the generation rate is also related to the ionization probability. Therefore, DCR depends on temperature, excess bias and the size of the active area of the SPAD. DCR determines the minimum incident photon rate that can be detected.
- Photon detection efficiency (PDE): When a light source with certain intensity is incident on the detector, only a portion of the incident photons can be detected due to several reasons, including surface reflection, photon absorption before reaching the depletion region, absorption coefficient of the material and the probability of triggering an avalanche. PDE is defined as the ratio of the number of voltage pulses detected to the number of total incident photons. PDE is the most important parameter to evaluate the detection efficiency of a SPAD, and it is a function of the incident wavelength and excess bias. The PDE of a SPAD corresponds to the external quantum efficiency of other types of photodetectors.
- Afterpulsing probability (AP): During the quenching phase, a large number of carriers flow through the depletion region. Some carriers are trapped in deep energy levels within the depletion region and released later to trigger a second detection cycle that is not initiated by photon absorption. The pulses generated by the released carriers from traps are named afterpulsing in SPAD. AP is correlated to the avalanche current and its duration, and thus, to the amount of charge of the avalanche pulse. Therefore, AP is proportional to the parasitic capacitance of the photodiode and the quenching time. The latter can be optimized by specially designed external control circuits.
- Fill factor (FF): To achieve fast quenching and resetting, complex control circuits are designed for SPAD pixels. In active SPAD pixels, the area of the control circuits is often comparable to or larger than the optically active area of the SPAD. Fill factor is defined as the ratio of the SPAD active area to the total pixel area. For better usage of the chip area, a high FF is preferred.
- Timing skew (TS): The shot noise of the events just described (i.e., parameters 1–5) contributes to distorting the spectra measured with time-resolved Raman spectrometers employing CMOS SPAD line sensors, and the so-called timing skew of the sensors [61,62,63]. Due to their spatial extension, a timing mismatch happens among the pixels of the sensor, i.e., the points of the spectrum. This leads in turn to shifted time gates for each pixel, so that photon counts at different spectral points may vary if the signal varies in time. This kind of sampling error can further distort the spectra.
4.2. Free Running Operation
4.3. Time-Gated Operation
4.4. Raman
- Single photon counting (SPC) mode (with a throughput of 65 giga-events/s);
- Time-correlated single photon counting (TCSPC) mode (194 million-events/s);
- Histogramming mode (HistMode) (16.5 giga-events/s).
4.5. Interferometry: A Possible Resource
- For each value of R, the FWHM (i.e., ) of the curves T vs. was suitably estimated.
- If the sum of these values was higher (lower) than the wavelength interval which was considered, their ratio was higher (lower) than 1; i.e., (<1).
4.6. SPAD: Conclusions
5. Intensified CCD (ICCD)
5.1. Introduction and Theory
- Photons are converted into electrons by a photocathode.
- Electrons are accelerated and deflected by a high speed sweep voltage.
- Electrons are projected across a phosphor screen.
- Electrons are converted back to photons by the phosphor screen.
5.2. State of the Art
5.3. ICCD: Conclusions
6. Summary and Conclusive Remarks
- Features
- Kerr-gate: the setup is based on a ps pulsed laser and a nonlinear medium acting as a switch when suitably activated. The detection should be implemented through a spectrometer coupled with a CCD or a CMOS.
- ICCD: The gating is fully accomplished by using the camera intensifier.
- TG-SPAD: The gating is realized by driving a SPAD with suitable electronics. Two different approaches can be followed: either a single SPAD spanning the wavelength range to be detected, or a SPAD array, measuring simultaneously all the wavelengths dispersed by a grating.
- Performances
- Kerr-gate: ps time-domain Raman spectroscopy can be achieved. The gating window has a similar duration as the employed laser pulse.
- ICCD: for particular samples and applications, the ICCD gate shows good performances. It is very sensitive and can improve the signal-to-noise ratio, allowing low-exposure spectroscopy.
- TG-SPAD: the temporal resolution can go from tens to hundreds of picoseconds and is related even to the pulse width of the laser.
- Drawbacks
- Kerr-gate: The gating and gated pulses must be accurately synchronized; the setup can reach remarkable size; high pulse energies are required; the activation time of the nonlinear medium can affect the theoretical performances achievable for a ps pulsed laser; the incomplete polarization rotation in the Kerr medium, the losses in optical elements and the optical transmittances of the Kerr gate do not allow one to obtain high efficiencies.
- ICCD: The performances are limited by the technology implemented in this kind of item. The temporal discrimination power of current ICCDs can only reach hundreds of picoseconds, making its exploitation and application limited when faster processes have to be investigated.
- TG-SPAD: Most SPAD imagers are still research prototypes, and only some characterized by limited size are commercially available.
- CostIt is high for all of the methods, though significant differences should be considered. In any case, a ps laser is necessary and can be expensive. Often it represents the main issue to be faced.
- Kerr-gate: the passive optical components that constitute the Kerr cell are relatively inexpensive.
- ICCD: the cost of the ICCD can surpass the cost of the laser, likely becoming the most expensive setup in the comparison.
- TG-SPAD: intermediate in cost compared to the previous solutions; it can be used to contain costs and improve the integration capability of the detection setup with the electronics of the developed device.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rostron, P.; Gaber, S.; Gaber, D. Raman spectroscopy, review. Int. J. Eng. Res. 2016, 6, 50–64. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Dong, W.; Chen, S.; Liu, Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 2015, 55, 387–406. [Google Scholar]
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolles, W.M.; Nibler, J.W.; McDonald, J.R.; Harvey, A.B. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl. Spectrosc. 1977, 31, 253–271. [Google Scholar] [CrossRef]
- Gebrekidan, M.T.; Knipfer, C.; Stelzle, F.; Popp, J.; Will, S.; Braeuer, A. A shifted-excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference. J. Raman Spectrosc. 2016, 47, 198–209. [Google Scholar] [CrossRef]
- Strommen, D.P.; Nakamoto, K. Resonance raman spectroscopy. J. Chem. Educ. 1977, 54, 474. [Google Scholar] [CrossRef]
- Angelini, F.; Colao, F. Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy. J. Eur. Opt. Soc. Rapid Publ. 2019, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, C.T.; Willitsford, A.H.; Philbrick, C.R.; Hallen, H.D. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene. J. Appl. Phys. 2015, 118, 243101. [Google Scholar] [CrossRef]
- Martyshkin, D.V.; Ahuja, R.C.; Kudriavtsev, A.; Mirov, S.B. Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera. Rev. Sci. Instrum. 2004, 75, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Wohlmuth, M.; Pflaum, C.; Altmann, K.; Paster, M.; Hahn, C. Dynamic multimode analysis of Q-switched solid state laser cavities. Opt. Express 2009, 17, 17303–17316. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, A.; Nemes, K.; Mozina, J. Rotating-mirror Q-switched Er: YAG laser for optodynamic studies. J. Mech. Eng. 2011, 57, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Van Duyne, R.P.; Jeanmaire, D.L.; Shriver, D.F. Mode-locked laser Raman spectroscopy. New technique for the rejection of interfering background luminescence signals. Anal. Chem. 1974, 46, 213–222. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 1st ed.; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Matousek, P.; Towrie, M.; Ma, C.; Kwok, W.M.; Phillips, D.; Toner, W.T.; Parker, A.W. Fluorescence suppression in resonance Raman spectroscopy using a high-performance ps Kerr gate. J. Raman Spectrosc. 2001, 32, 983–988. [Google Scholar] [CrossRef]
- Knorr, F.; Smith, Z.J.; Wachsmann-Hogiu, S. Development of a time-gated system for Raman spectroscopy of biological samples. Opt. Express 2010, 18, 20049–20058. [Google Scholar] [CrossRef]
- Yakovlev, V.V. Time gated confocal Raman microscopy: System design and its applications. In Proceedings of the SPIE, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues V, San Jose, CA, USA, 20–25 January 2007; Volume 6441, p. 64411H. [Google Scholar]
- Tan, W.; Yang, Y.; Si, J.; Tong, J.; Yi, W.; Chen, F.; Hou, X. Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass. J. Appl. Phys. 2010, 107, 043104. [Google Scholar]
- Matousek, P.; Everall, N.; Towrie, M.; Parker, A.W. Depth Profiling in Diffusely Scattering Media Using Raman Spectroscopy and ps Kerr Gating. Appl. Spectrosc. 2005, 59, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Laimgruber, S.; Zinth, W.; Gilch, P. A broadband Kerr shutter for femtosecond fluorescence spectroscopy. Appl. Phys. B 2003, 76, 809–814. [Google Scholar] [CrossRef]
- Everall, N.; Hahn, T.; Matousek, P.; Parker, A.W.; Towrie, M. ps Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for Fluorescence Rejection and the Influence of Diffuse Reflectance. Appl. Spectrosc. 2001, 55, 1701–1708. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Ryasnyanski, A.I.; Kuroda, H. Nonlinear Optical Characteristics of Carbon Disulfide. Opt. Spectrosc. 2006, 100, 108–118. [Google Scholar] [CrossRef]
- Kim, M.J.; Hwang, J.; Wu, J.W. ps Nonlinear Optical Transmission Measurement on Anatase TiO2 Thin Films. J. Korean Phys. Soc. 2006, 49, 938–942. [Google Scholar]
- Dimitrov, V.; Sakka, S. Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 1996, 79, 1741–1745. [Google Scholar] [CrossRef] [Green Version]
- Vissers, E.J.P. Optical Nonlinearity in Titanium Dioxide Waveguides. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2018. [Google Scholar]
- Yang, T.; Park, S.J.; Kim, T.G.; Shin, D.S.; Suh, K.D.; Park, J. Ultraviolet photodetector using pn junction formed by transferrable hollow n-TiO2 nanospheres monolayer. Appl. Spectrosc. 2017, 25, 30843–30850. [Google Scholar]
- Lin, C.P.; Chen, H.; Nakaruk, A.; Koshy, P.; Sorrell, C.C. Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films. Energy Procedia 2013, 34, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszak, D.; Mazur, M.; Kurnatowska, M.; Kaczmarek, D.; Domaradzki, J.; Kepinski, L.; Chojnacki, K. Influence of Nd-Doping on Photocatalytic Properties of TiO2 Nanoparticles and Thin Film Coatings. Int. J. Photoenergy 2014, 2014, 463034. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Ozawa, H.; Kanematsu, Y.; Tanaka, Y.; Sugimoto, N.; Fujiwara, S. Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy. Rev. Sci. Instrum. 2000, 71, 3317. [Google Scholar] [CrossRef]
- Fowles, G.R. Matrix Representation of Polarization. The Jones Calculus. In Introduction to Modern Optics, 2nd ed.; Dover Publications Inc.: New York, NY, USA, 1989. [Google Scholar]
- Thakur, S.; Semnani, B.; Safavi-Naeini, S.; Majedi, A.H. Experimental Characterization of the Ultrafast, Tunable and Broadband Optical Kerr Nonlinearity in Graphene. Sci. Rep. 2019, 9, 10540. [Google Scholar] [CrossRef]
- Aber, J.E.; Newstein, M.C.; Garetz, B.A. Femtosecond optical Kerr effect measurements in silicate glasses. JOSA B 2000, 17, 120–127. [Google Scholar] [CrossRef]
- Hoffmann, M.C.; Brandt, N.C.; Hwang, H.Y.; Yeh, K.L.; Nelson, K.A. Terahertz Kerr effect. Appl. Phys. Lett. 2009, 95, 231105. [Google Scholar] [CrossRef] [Green Version]
- Pontecorvo, E.; Ferrante, C.; Elles, C.G.; Scopigno, T. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 2013, 21, 6866–6872. [Google Scholar] [CrossRef] [PubMed]
- Batignani, G.; Ferrante, C.; Fumero, G.; Scopigno, T. Broadband Impulsive Stimulated Raman Scattering Based on a Chirped Detection. J. Phys. Chem. Lett. 2019, 10, 7789–7796. [Google Scholar] [CrossRef] [Green Version]
- Eksma Beam Shaper. Available online: http://eksmaoptics.com/out/media/EKSMA_Optics_Top_Hat_Beam_Shaping_Lenses_FBS.pdf (accessed on 9 March 2021).
- Matousek, P.; Towrie, M.; Stanley, A.; Parker, A.W. Efficient rejection of fluorescence from Raman spectra using ps Kerr gating. Appl. Spectrosc. 1999, 53, 1485–1489. [Google Scholar] [CrossRef]
- El-Desouki, M.M.; Palubiak, D.; Deen, M.; Fang, Q.; Marinov, O. A novel, high-dynamic-range, high-speed, and high-sensitivity CMOS imager using time-domain single-photon counting and avalanche photodiodes. IEEE Sens. J. 2011, 11, 1078–1083. [Google Scholar] [CrossRef]
- El-Desouki, M.M.; Marinov, O.; Deen, M.; Fang, Q. CMOS active-pixel sensor with in-situ memory for ultrahigh-speed imaging. IEEE Sens. J. 2011, 11, 1375–1379. [Google Scholar] [CrossRef]
- Palubiak, D.P.; Deen, M. CMOS SPADs: Design issues and research challenges for detectors, circuits, and arrays. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 409–426. [Google Scholar] [CrossRef]
- Li, D.; Arlt, J.; Richardson, J.; Walker, R.; Buts, A.; Stoppa, D.; Charbon, E.; Henderson, R. Real-time fluorescence lifetime imaging system with a 32 × 32 0.13 μm CMOS low dark-count single-photon avalanche diode array. Opt. Express 2010, 18, 10257–10269. [Google Scholar] [CrossRef]
- Pancheri, L.; Stoppa, D. A SPAD-based pixel linear array for high-speed time-gated fluorescence lifetime imaging. In Proceedings of the ESSCIRC, Athens, Greece, 14–18 September 2009; Volume 8, pp. 428–431. [Google Scholar]
- Castello, M.; Tortarolo, G.; Buttafavai, R.; Deguchi, T.; Villa, F.; Koho, S.; Pesce, L.; Oneto, M.; Pelicci, S.; Lanzanó, L.; et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 2019, 16, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Slenders, E.; Castello, M.; Buttafava, M.; Villa, F.; Tosi, A.; Lanzanó, L.; Valtteri Koho, S.; Vicidomini, G. Confocal-based fluorescence fluctuation spectroscopy with a SPAD array detector. Light Sci. Appl. 2021, 10, 31. [Google Scholar] [CrossRef]
- Tosi, A.; Mora, A.D.; Zappa, F.; Gulinatti, A.; Contini, D.; Pifferi, A.; Spinelli, L.; Torricelli, A.; Cubeddu, R. Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements. Opt. Express 2011, 19, 10735–10746. [Google Scholar] [CrossRef]
- Dalla Mora, A.; Tosi, A.; Zappa, F.; Cova, S.; Contini, D.; Pifferi, A.; Spinelli, L.; Torricelli, A.; Cubeddu, R. Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1023–1030. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M.; Matsubara, H.; Ogawa, M.; Kagami, M. A 0.18 μm CMOS SoC for a 100 m-range 10 fps 200 × 96-pixel time-of-flight depth sensor. In Proceedings of the IEEE Solid State Circuits Conference, San Francisco, CA, USA, 17–21 February 2013; Volume 19, pp. 488–489. [Google Scholar]
- Zhang, C.; Lindner, S.; Antolovic, I.; Wolf, M.; Charbon, E. A CMOS SPAD imager with collision detection and 128 dynamically reallocating TDCs for single-photon counting and 3D time-of-flight imaging. Sensors 2018, 18, 4016. [Google Scholar] [CrossRef] [Green Version]
- Villa, F.; Lussana, R.; Bronzi, D.; Tisa, S.; Tosi, A.; Zappa, F.; Dalla Mora, A.; Contini, D.; Durini, D.; Weyers, S.; et al. CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 364–373. [Google Scholar] [CrossRef]
- Avella, A.; Piacentini, F.; Borsarelli, M.; Barbieri, M.; Gramegna, M.; Lussana, R.; Villa, F.; Tosi, A.; Degiovanni, I.P.; Genovese, M. Anomalous Weak Values and the Violation of a Multiple-measurement Leggett-Garg Inequality. Phys. Rev. A 2017, 96, 052123. [Google Scholar] [CrossRef]
- Zhang, J.; Itzler, M.; Zbinden, H.; Pan, J.-W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 2015, 4, e286. [Google Scholar] [CrossRef] [Green Version]
- Aspden, R.S.; Gemmell, N.R.; Morris, P.A.; Tasca, D.S.; Mertens, L.; Tanner, M.G.; Kirkwood, R.A.; Ruggeri, A.; Tosi, A.; Boyd, R.W.; et al. Photon-sparse microscopy: Visible light imaging using infrared illumination. Optica 2015, 2, 1049–1052. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M. Photon-sparse microscopy: Visible light imaging using infrared illumination. J. Opt. 2016, 18, 073002. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Blacksberg, J.; Charbon, E. A 1024 × 8700 ps timegated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS. IEEE J. Solid State Circuits 2014, 49, 179–189. [Google Scholar] [CrossRef]
- Kostamovaara, J.; Tenhunen, J.; Kögler, M.; Nissinen, I.; Nissinen, J.; Keränen, P. Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD. Opt. Express 2013, 21, 31632–31645. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, I.; Nissinen, J.; Lansman, A.; Hallman, L.; Kilpela, A.; Kostamovaara, J.; Kogler, M.; Aikio, M.; Tenhunen, J. A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy. In Proceedings of the European Solid-State Device Research Conference, Helsinki, Finland, 12–16 September 2011; pp. 375–378. [Google Scholar]
- Li, Z.; Deen, M.J. Towards a portable raman spectrometer using a concave grating and a time-gated CMOS SPAD. Opt. Express 2014, 22, 18736–18747. [Google Scholar] [CrossRef] [PubMed]
- Charbon, E. Single-photon imaging in complementary metal oxide semiconductor processes. Philos. Trans. R. Soc. A 2014, 372, 20130100. [Google Scholar] [CrossRef] [Green Version]
- Holma, J.; Nissinen, I.; Nissinen, J.; Kostamovaara, J. Characterization of the timing homogeneity in a CMOS SPAD array designed for time-gated Raman spectroscopy. IEEE Trans. Instrum. Meas. 2017, 66, 1837–1844. [Google Scholar] [CrossRef]
- Nissinen, I.; Nissinen, J.; Keränen, P.; Stoppa, D.; Kostamovaara, J. A 16 × 256 SPAD line detector with a 50-ps, 3-bit, 256-channel time-to-digital converter for Raman spectroscopy. IEEE Sens. J. 2018, 18, 3789–3798. [Google Scholar] [CrossRef] [Green Version]
- Kekkonen, J.; Talala, T.; Nissinen, J.; Nissinen, I. On the Spectral Quality of Time-Resolved CMOS SPAD-Based Raman Spectroscopy With High Fluorescence Backgrounds. IEEE Sens. J. 2020, 20, 4635–4645. [Google Scholar] [CrossRef] [Green Version]
- Li, Z. Miniaturization of Time-Gated Raman Spectrometer with a Concave Grating and a CMOS Single Photon Avalanche Diode. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2015. [Google Scholar]
- Gallivanoni, A.; Rech, I.; Ghioni, M. Progress in quenching circuits for single photon avalanche diodes. IEEE Trans. Nucl. Sci. 2010, 57, 3815–3826. [Google Scholar] [CrossRef]
- Eisele, A.; Henderson, R.; Schmidtke, B.; Funk, T.; Grant, L.; Richardson, J.; Freude, W. 185 MHz count rate, 139 dB dynamic range single-photon avalanche diode with active quenching circuit in 130 nm CMOS technology. In Proceedings of the International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011. [Google Scholar]
- Palubiak, D.; El-Desouki, M.M.; Marinov, O.; Deen, M.; Fang, Q. High-speed, single-photon avalanche-photodiode imager for biomedical applications. IEEE Sens. J. 2011, 11, 2401–2412. [Google Scholar] [CrossRef]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light Sci. Appl. 2019, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Blacksberg, J.; Charbon, E. A time-resolved 128x128 SPAD camera for laser Raman spectroscopy. Proc. SPIE 2012, 8374, 83740N. [Google Scholar]
- Vilella, E.; Alonso, O.; Montiel, A.; Vilá, A.; Dieguez, A. A low-noise time-gated single-photon detector in a HV-CMOS technology for triggered imaging. Sens. Actuators A 2013, 201, 342–351. [Google Scholar] [CrossRef]
- Morimoto, K.; Ardelean, A.; Wu, M.L.; Ulku, A.C.; Antolovic, I.M.; Bruschini, C.; Charbon, E. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 2020, 7, 346–354. [Google Scholar] [CrossRef]
- Rochas, A.; Gosch, M.; Serov, A.; Besse, P.A.; Popovic, R.S.; Lasser, T.; Rigler, R. First fully integrated 2-D array of single-photon detectors in standard CMOS technology. IEEE Photonics Technol. Lett. 2003, 15, 963–965. [Google Scholar] [CrossRef] [Green Version]
- Michalet, X.; Ingargiola, A.; Colyer, R.A.; Scalia, G.; Weiss, S.; Maccagnani, P.; Gulinatti, A.; Rech, I.; Ghioni, M. Silicon photon-counting avalanche diodes for singlemolecule fluorescence spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 248–267. [Google Scholar] [CrossRef]
- Rech, I.; Resnati, D.; Marangoni, S.; Ghioni, M.; Cova, S. Compact eight channel photon counting module with monolithic array detector. Proc. SPIE 2007, 6771, 677113. [Google Scholar]
- Rech, I.; Marangoni, S.; Resnati, D.; Ghioni, M.; Cova, S. Multipixel single photon avalanche diode array for parallel photon counting applications. J. Mod. Opt. 2009, 56, 326–333. [Google Scholar] [CrossRef]
- Michalet, X.; Colyer, R.A.; Scalia, G.; Kim, T.; Levi, M.; Aharoni, D.; Cheng, A.; Guerrieri, F.; Arisaka, K.; Millaud, J.; et al. High-throughput single-molecule fluorescence spectroscopy using parallel detection. Proc. SPIE 2010, 7608, 76082D. [Google Scholar]
- Michalet, X.; Colyer, R.A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J.E.; Weiss, S.; Siegmund, O.H.W.; Tremsin, A.S.; Vallerga, J.V.; et al. Development of new photon-counting detectors for singlemolecule fluorescence microscopy. Philos. Trans. R. Soc. B 2013, 368, 20120035. [Google Scholar] [CrossRef] [Green Version]
- Ingargiola, A.; Colyer, R.A.; Kim, D.; Panzeri, F.; Lin, R.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X. Parallel multispot smFRET analysis using an 8 pixel SPAD array. Proc. SPIE 2012, 8228, 82280B. [Google Scholar]
- Ingargiola, A.; Panzeri, F.; Sarkosh, N.; Gulinatti, A.; Rech, I.; Ghioni, M.; Weiss, S.; Michalet, X. 8-spot smFRET analysis using two 8 pixel SPAD arrays. Proc. SPIE 2013, 8590, 85900E. [Google Scholar]
- Schwartz, D.E.; Charbon, E.; Shepard, K.L. A single-photon avalanche diode imager for fluorescence lifetime applications. In Proceedings of the IEEE Symposium in VLSI Circuits, Kyoto, Japan, 14–16 June 2007; pp. 144–145. [Google Scholar]
- Schwartz, D.E.; Charbon, E.; Shepard, K.L. A single-photon avalanche diode array for fluorescence lifetime imaging microscopy. IEEE J. Solid State Circuits 2008, 43, 2546–2557. [Google Scholar] [CrossRef] [Green Version]
- Niclass, C.; Favi, C.; Kluter, T.; Gersbach, M.; Charbon, E. 128 × 128 single photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J. Solid State Circuits 2008, 43, 2977–2989. [Google Scholar] [CrossRef]
- Pavia, J.M.; Wolf, M.; Charbon, E. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 2014, 22, 4202–4213. [Google Scholar] [CrossRef]
- Pavia, J.M.; Wolf, M.; Charbon, E. Single-photon avalanche diode imagers applied to near-infrared imaging. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Boiko, D.; Gunther, N.J.; Brauer, N.; Sergio, M.; Niclass, C.; Beretta, G.B.; Charbon, E. A quantum imager for intensity correlated photons. New J. Phys. 2009, 11, 013001. [Google Scholar] [CrossRef]
- Boiko, D.; Gunther, N.J.; Brauer, N.; Sergio, M.; Niclass, C.; Beretta, G.B.; Charbon, E. On the application of a monolithic array for detecting intensity-correlated photons emitted by different source types. Opt. Express 2009, 17, 15087–15103. [Google Scholar] [CrossRef] [Green Version]
- Homulle, H.; Powolny, F.; Stegehuis, P.L.; Dijkstra, J.; Li, D.U.; Homicsko, K.; Rimoldi, D.; Muehlethaler, K.; Prior, J.O.; Sinisi, R.; et al. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements. Biomed. Opt. Express 2016, 7, 1797–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niclass, C.; Favi, C.; Kluter, T.; Monnier, F.; Charbon, E. Single-photon synchronous detection. IEEE J. Solid State Circuits 2009, 44, 1977–1989. [Google Scholar] [CrossRef]
- Stegehuis, P.L.; Boonstra, M.C.; de Rooij, K.E.; Powolny, F.E.; Sinisi, R.; Homulle, H.; Bruschini, C.; Charbon, E.; van de Velde, C.J.H.; Lelieveldt, B.P.F.; et al. Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro; in vivo. Proc. SPIE 2015, 9313, 93130O. [Google Scholar]
- Vitali, M.; Bronzi, D.; Krmpot, A.J.; Nikolic, S.N.; Schmitt, F.J.; Junghans, C.; Tisa, S.; Friedrich Vukojevic, T.V.; Terenius, L.; Zappa, F.; et al. A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 344–353. [Google Scholar] [CrossRef]
- Colyer, R.A.; Scalia, G.; Villa, F.; Guerrieri, F.; Tisa, S.; Zappa, F.; Cova, S.; Weiss, S.; Michalet, X. Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD. Proc. SPIE 2011, 7905, 790503. [Google Scholar]
- Guerrieri, F.; Tisa, S.; Tosi, A.; Zappa, F. Fast single-photon imager acquires 1024 pixels at 100 kframe/s. Proc. SPIE 2009, 7249, 72490U. [Google Scholar]
- Guerrieri, F.; Tisa, S.; Tosi, A.; Zappa, F. Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics J. 2010, 2, 759–774. [Google Scholar] [CrossRef]
- Gersbach, M.; Maruyama, Y.; Trimananda, R.; Fishburn, M.W.; Stoppa, D.; Richardson, J.A.; Walker, R.; Henderson, R.; Charbon, E. A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology. IEEE J. Solid State Circuits 2012, 47, 1394–1407. [Google Scholar] [CrossRef]
- Li, D.U.; Tyndall, D.; Walker, R.; Richardson, J.A.; Henderson, R.K.; Arlt, J.; Stoppa, D.; Charbon, E. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. J. Biomed. Opt 2011, 16, 096012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.; Walker, R.; Grant, L.; Stoppa, D.; Borghetti, F.; Charbon, E.; Gersbach, M.; Henderson, R.K. A 32 × 32 50 ps resolution 10-bit time to digital converter array in 130 nm CMOS for time correlated imaging. In Proceedings of the IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 13–16 September 2009; pp. 77–80. [Google Scholar]
- Krstajić, N.; Poland, S.; Levitt, J.; Walker, R.; Erdogan, A.; Ameer-Beg, S.; Henderson, R.K. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays. Opt. Lett. 2015, 40, 4305–4308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gersbach, M.; Trimananda, R.; Maruyama, Y.; Fishburn, M.; Stoppa, D.; Richardson, J.; Walker, R.; Henderson, R.K.; Charbon, E. High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor. Proc. SPIE 2010, 7780, 77801H. [Google Scholar]
- Li, D.U.; Ameer-Beg, S.; Arlt, J.; Tyndall, D.; Walker, R.; Matthews, D.R.; Visitkul, V.; Richardson, J.; Henderson, R.K. Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays. Sensors 2012, 12, 5650–5669. [Google Scholar] [CrossRef] [PubMed]
- Poland, S.P.; Coelho, S.; Krstajić, N.; Tyndall, D.; Walker, R.J.; Monypenny, J.; Li, D.D.U.; Henderson, R.K.; Ameer-Beg, S.M. Development of a fast TCSPC FLIM-FRET imaging system. Proc. SPIE 2013, 8588, 85880X. [Google Scholar]
- Poland, S.P.; Krstajić, N.; Coelho, S.; Tyndall, D.; Walker, R.J.; Devauges, V.; Morton, P.E.; Nicholas, N.S.; Richardson, J.; Li, D.D.U.; et al. Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo. Opt. Lett. 2014, 39, 6013–6016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poland, S.P.; Krstajić, N.; Monypenny, J.; Coelho, S.; Tyndall, D.; Walker, R.J.; Devauges, V.; Richardson, J.; Dutton, N.; Barber, P.; et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed. Opt. Express 2015, 6, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Poland, S.P.; Erdogan, A.T.; Krstajić, N.; Levitt, J.; Devauges, V.; Walker, R.J.; Li, D.U.; Ameer-Beg, S.M.; Henderson, R.K. New high-speed centre of mass method incorporating background subtraction for accurate determination of fluorescence lifetime. Opt. Express 2016, 24, 6899–6915. [Google Scholar] [CrossRef] [Green Version]
- Kloster-Landsberg, M.; Tyndall, D.; Wang, I.; Walker, R.; Richardson, J.; Henderson, R.; Delon, A. Multi-confocal fluorescence correlation spectroscopy in living cells using a complementary metal oxide semiconductorsingle photon avalanche diode array. Rev. Sci. Instrum. 2013, 84, 076105. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Krieger, J.W.; Buchholz, J.; Charbon, E.; Langowski, J.; Wohland, T. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt. Express 2013, 21, 8652–8668. [Google Scholar] [CrossRef] [Green Version]
- Carrara, L.; Niclass, C.; Scheidegger, N.; Shea, H.; Charbon, E. A gamma, X-ray and high energy proton radiation-tolerant CIS for space applications. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 8–12 February 2009; pp. 40–41. [Google Scholar]
- Stuker, F.; Baltes, C.; Dikaiou, K.; Vats, D.; Carrara, L.; Charbon, E.; Ripoll, J.; Rudin, M. A novel hybrid imaging system for simultaneous fluorescence molecular tomography and magnetic resonance imaging. In Proceedings of the Biomedical Optics and 3-D Imaging (BTuD1), Miami, FL, USA, 11–14 April 2010. [Google Scholar]
- Stuker, F.; Baltes, C.; Dikaiou, K.; Vats, D.; Carrara, L.; Charbon, E.; Ripoll, J.; Rudin, M. Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors. IEEE Trans. Med. Imaging 2011, 30, 1265–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoppa, D.; Mosconi, D.; Pancheri, L.; Gonzo, L. Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements. IEEE Sens. J. 2009, 9, 1084–1090. [Google Scholar] [CrossRef]
- Maruyama, Y.; Charbon, E. An all-digital, time-gated 128 × 128 SPAD array for on-chip, filter-less fluorescence detection. In Proceedings of the IEEE Solid-State Sensors Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 1180–1183. [Google Scholar]
- Blacksberg, J.; Maruyama, Y.; Charbon, E.; Rossman, G.R. Fast single-photon avalanche diode arrays for laser Raman spectroscopy. Opt. Lett. 2011, 36, 3672–3674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerappan, C.; Richardson, J.; Walker, R.; Li, D.U.; Fishburn, M.W.; Maruyama, Y.; Stoppa, D.; Borghetti, F.; Gersbach, M.; Henderson, R.K.; et al. A 160 × 128 single-photon image sensor with on-pixel 55 ps 10b time-to-digital converter. In Proceedings of the 2011 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; Volume 16, p. 312314. [Google Scholar]
- Veerappan, C.; Richardson, J.; Walker, R.; Li, D.U.; Fishburn, M.W.; Stoppa, D.; Borghetti, F.; Maruyama, Y.; Gersbach, M.; Henderson, R.K.; et al. Characterization of large-scale non-uniformities in a 20k TDC/SPAD array integrated in a 130 nm CMOS process. In Proceedings of the European Solid-State Device Research Conference, Helsinki, Finland, 12–16 September 2011; pp. 331–334. [Google Scholar]
- Pancheri, L.; Massari, N.; Borghetti, F.; Stoppa, D. A 32 × 32 SPAD pixel array with nanosecond gating and analog readout. In Proceedings of the International Image Sensor Workshop, Hokkaido, Japan, 8–11 June 2011; pp. 1–4. [Google Scholar]
- Pancheri, L.; Pasquardini, L.; Morganti, E.; Massari, N.; Stoppa, D.; Collini, C.; Lorenzelli, L.; Lunelli, L.; Pederzolli, C. Protein detection system based on 32 × 32 SPAD pixel array. Proc. SPIE 2012, 8439, 843913. [Google Scholar]
- Pancheri, L.; Massari, N.; Stoppa, D. SPAD image sensor with analog counting pixel for time-resolved fluorescence detection. IEEE Trans. Electron Devices 2013, 60, 3442–3449. [Google Scholar] [CrossRef]
- Durini, D.; Weyers, S.; Stühlmeyer, M.; Goehlich, A.; Brockherde, W.; Paschen, U.; Vogt, H.; Tisa, S.; Villa, F.; Bronzi, D.; et al. BackSPAD—Back-side illuminated single-photon avalanche diodes: Concept and preliminary performances. In Proceedings of the IEEE Symposium on Nuclear Science, Anaheim, CA, USA, 27 October–3 November 2012; pp. 1–2. [Google Scholar]
- Zou, Y.; Bronzi, D.; Villa, F.; Weyers, S. Backside Illuminated Wafer-to-Wafer Bonding Single Photon Avalanche Diode Array. In Proceedings of the Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Grenoble, France, 30 June–3 July 2014; pp. 1–4. [Google Scholar]
- Arlt, J.; Tyndall, D.; Rae, B.R.; Li, D.D.U.; Richardson, J.A.; Henderson, R.K. A study of pile-up in integrated time-correlated single photon counting systems. Rev. Sci. Instrum. 2013, 84, 103105. [Google Scholar] [CrossRef]
- Tyndall, D.; Rae, B.R.; Li, D.D.U.; Richardson, J.A.; Arlt, J.; Henderson, R.K. A 100 Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 μm CMOS imaging technology. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; Volume 55, pp. 122–124. [Google Scholar]
- Tyndall, D.; Rae, B.R.; Li, D.D.U.; Arlt, J.; Johnston, A.; Richardson, J.A.; Henderson, R.K. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 19–23 February 2012; Volume 6, pp. 562–570. [Google Scholar]
- Field, R.M.; Shepard, K.L. A 100 fps fluorescence lifetime imager in standard 0.13 μm CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits, Kyoto, Japan, 12–14 June 2013; pp. C10–C11. [Google Scholar]
- Field, R.M.; Realov, S.; Shepard, K.L. A 100 fps, time-correlated singlephoton-counting-based fluorescence-lifetime imager in 130 nm CMOS. IEEE J. Solid State Circuits 2014, 49, 867–880. [Google Scholar] [CrossRef]
- Mandai, S.; Charbon, E. A 4 × 4 × 416 digital SiPM array with 192 TDCs for multiple high-resolution timestamp acquisition. J. Instrum. 2013, 8, P05024. [Google Scholar] [CrossRef]
- Maruyama, Y.; Blacksberg, J.; Charbon, E. A 1024 × 8 700 ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and roverbased planetary exploration. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2013; pp. 110–111. [Google Scholar]
- Nissinen, I.; Lansman, A.K.; Nissinen, J.; Holma, J.; Kostamovaara, J. A 2×(4×) 128 time-gated CMOS single photon avalanche diode line detector with 100 ps resolution for Raman spectroscopy. In Proceedings of the ESSCIRC, Bucharest, Romania, 16–20 September 2013; pp. 291–294. [Google Scholar]
- Nissinen, I.; Nissinen, J.; P.Keränen Lansman, A.K.; Holma, J.; Kostamovaara, J. A 2 × (4) × 128 multitime-gated SPAD line detector for pulsed Raman spectroscopy. IEEE Sens. J. 2015, 15, 1358–1365. [Google Scholar] [CrossRef]
- Nissinen, I.; Nissinen, J.; Holma, J.; Kostamovaara, J. A 4 × 128 SPAD array with a 78 ps 512 channel TDC for time-gated pulsed Raman spectroscopy. Analog Integr. Circuits Signal Process 2015, 84, 353–362. [Google Scholar] [CrossRef]
- Walker, R.J.; Braga, L.H.C.; Erdogan, A.T.; Gasparini, L.; Grant, L.A.; Henderson, R.K.; Massari, N.; Perenzoni, M.; Stoppa, D. A 92k SPAD time-resolved sensor in 0.13 μm CIS technology for PET/MRI applications. In Proceedings of the International Image Sensor Workshop, Snowbird, UT, USA, 12–16 June 2013; pp. 1–4. [Google Scholar]
- Braga, L.H.; Gasparini, L.; Grant, L.; Henderson, R.K.; Massari, N.; Perenzoni, M.; Stoppa, D.; Walker, R. A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output. IEEE J. Solid State Circuits 2014, 49, 301–314. [Google Scholar] [CrossRef]
- Unternährer, M.; Bessire, B.; Gasparini, L.; Stoppa, D.; Stefanov, A. Coincidence detection of spatially correlated photon pairs with a monolithic timeresolving detector array. Opt. Express 2016, 24, 28829–28841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparini, L.; Bessire, B.; Unternährer, M.; Stefanov, A.; Boikoc, D.; Perenzoni, M.; Stoppa, D. SUPERTWIN: Towards 100 kpixel CMOS quantum image sensors for quantum optics applications. In Proceedings of the SPIE Quantum Sensing and Nano Electronics Photonics XIV, San Francisco, CA, USA, 28 January–2 February 2017; Volume 10111, p. 101112L. [Google Scholar]
- Burri, S.; Maruyama, Y.; Michalet, X.; Regazzoni, F.; Bruschini, C.; Charbon, E. Architecture and applications of a high resolution gated SPAD image sensor. Opt. Express 2014, 22, 17573–17589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antolovic, I.M.; Burri, S.; Bruschini, C.; Hoebe, R.; Charbon, E. Nonuniformity analysis of a 65 kpixel CMOS SPAD imager. IEEE Trans. Electron Devices 2016, 63, 57–64. [Google Scholar] [CrossRef]
- Wargocki, P.M.; Burri, S.; Bruschini, C.; Antolovic, I.M.; Charbon, E.; Goldys, E.M.; Spence, D.J. Imaging free and bound NADH towards cancer tissue detection using FLIM system based on SPAD array. In Proceedings of the European Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 25–29 June 2017. [Google Scholar]
- Antolovic, I.M.; Burri, S.; Bruschini, C.; Hoebe, R.A.; Charbon, E. Analyzing blinking effects in super resolution localization microscopy with singlephoton SPAD imagers. Proc. SPIE 2016, 9714, 971406. [Google Scholar]
- Antolovic, I.M.; Burri, S.; Bruschini, C.; Hoebe, R.A.; Charbon, E. SPAD imagers for super resolution localization microscopy enable analysis of fast fluorophore blinking. Sci. Rep. 2017, 7, 44108. [Google Scholar] [CrossRef] [Green Version]
- Antolovic, I.M.; Burri, S.; Hoebe, R.A.; Maruyama, Y.; Bruschini, C.; Charbon, E. Photon-Counting Arrays for Time-Resolved Imaging. Sensors 2016, 16, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carimatto, A.; Mandai, S.; Venialgo, E.; Gong, T.; Borghi, G.; Schaart, D.R.; Charbon, E. A 67,392-SPAD PVTB-compensated multi-channel digital SiPM with 432 column-parallel 48 ps 17b TDCs for endoscopic time-of-flight. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 22–26 February 2015; pp. 1–3. [Google Scholar]
- Krstajić, N.; Levitt, J.; Poland, S.; Ameer-Beg, S.; Henderson, R. 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy. Opt. Express 2015, 23, 5653–5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, K.; Kufcsák, A.; Krstajić, N.; Henderson, R.K.; Thomson, R.R.; Tanner, M.G. Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays. Proc. SPIE 2017, 10058, 100580H. [Google Scholar]
- Parmesan, L.; Dutton, N.A.W.; Calder, N.J.; Krstajić, N.; Holmes, A.J.; Grant, L.A.; Henderson, R.K. A 256 × 256 SPAD array with in-pixel time to amplitude conversion for fluorescence lifetime imaging microscopy. In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–1 June 2015. [Google Scholar]
- Pavia, J.M. Near-Infrared Optical Tomography with Single-Photon Avalanche Diode Image Sensors. Ph.D. Thesis, EPFL—University of Lausanne, Lausanne, Switzerland, 2015. [Google Scholar]
- Pavia, J.M.; Scandini, M.; Lindner, S.; Wolf, M.; Charbon, E. A 1 × 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography. IEEE J. Solid State Circuits 2015, 50, 2406–2418. [Google Scholar] [CrossRef]
- AlAbbas, T.; Dutton, N.A.W.; Almer, O.; Pellegrini, S.; Henrion, Y.; Henderson, R.K. Backside illuminated SPAD image sensor with 7.83 μm pitch in 3D-Stacked CMOS technology. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 3–7 December 2016; pp. 8.1.1–8.1.4. [Google Scholar]
- Lee, C.; Johnson, B.; Jung, T.; Molnar, A. A 72 × 60 angle-sensitive SPAD imaging array for lens-less FLIM. Sensors 2016, 16, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, S.; Bruschini, C.; Charbon, E. LinoSPAD: A compact linear SPAD camera system with 64 FPGA-based TDC modules for versatile 50 ps resolution timeresolved imaging. Instruments 2017, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Burri, S.; Homulle, H.; Bruschini, C.; Charbon, E. LinoSPAD: A time-resolved 256 × 1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second. Proc. SPIE 2016, 9899, 98990D. [Google Scholar]
- Perenzoni, M.; Massari, N.; Perenzoni, D.; Gasparini, L.; Stoppa, D. A 160 × 120 pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging. IEEE J. Solid State Circuits 2016, 51, 155–167. [Google Scholar]
- Dutton, N.A.W.; Gyongy, I.; Parmesan, L.; Gnecchi, S.; Calder, N.; Rae, B.R.; Pellegrini, S.; Grant, L.A.; Henderson, R.K. A SPAD-based QVGA image sensor for single-photon counting and quanta imaging. IEEE Trans. Electron Devices 2016, 63, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Gyongy, I.; Davies, A.; Gallinet, B.; Dutton, N.A.W.; Duncan, R.R.; Rickman, C.; Henderson, R.K.; Dalgarno, P.A. Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy. Opt. Express 2018, 26, 2280–2291. [Google Scholar] [CrossRef] [Green Version]
- Gyongy, I.; Davies, A.; Dutton, N.A.W.; Duncan, R.R.; Rickman, C.; Henderson, R.K.; Dalgarno, P.A. Smart-aggregation imaging for single molecule localisation with SPAD cameras. Sci. Rep. 2016, 6, 37349. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, A.T.; Walker, R.; Finlayson, N.; Krstajić, N.; Williams, G.O.S.; Henderson, R.K. A 16.5 giga events/s 1024 × 8 SPAD line sensor with per pixel zoomable 50 ps-6.4 ns/bin histogramming TDC. In Proceedings of the IEEE Symposium in VLSI Circuits, Kyoto, Japan, 5–8 June 2017; pp. C292–C293. [Google Scholar]
- Kufcsák, A.; Erdogan, A.; Walker, R.; Ehrlich, K.; Tanner, M.; Megia-Fernandez, A.; Scholefield, E.; Emanuel, P.; Dhaliwal, K.; Bradley, M.; et al. Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications. Opt. Express 2017, 25, 11103–11123. [Google Scholar] [CrossRef] [Green Version]
- Lindner, S.; Zhang, C.; Antolovic, I.M.; Kalyanov, A.; Jiang, J.; Ahnen, L.; di Costanzo, A.; Pavia, J.M.; Majos, S.S.; Charbon, E.; et al. A novel 32 × 32, 224 Mevents/s time resolved SPAD image sensor for near-infrared optical tomography. In Proceedings of the Biophotonics Congress: Biomedical Optics Congress (JTh5A.6), Hollywood, FL, USA, 3–6 April 2018; p. 790503. [Google Scholar]
- Lindner, S.; Zhang, C.; Antolovic, I.M.; Pavia, J.M.; Wolf, M.; Charbon, E. Column-parallel dynamic TDC reallocation in SPAD sensor module fabricated in 180 nm CMOS for near infrared optical tomography. In Proceedings of the International Image Sensor Workshop, Hiroshima, Japan, 30 May–2 June 2017; pp. 86–89. [Google Scholar]
- Kalyanov, A.; Jiang, J.; Lindner, S.; Ahnen, L.; di Costanzo, A.; Pavia, J.M.; Majos, S.S.; Wolf, M. Time domain near-infrared optical tomography with timeof-flight SPAD camera: The new generation. In Proceedings of the Biophotonics Congress: Biomedical Optics Congress, Hollywood, FL, USA, 3–6 April 2018; OF4D.5. [Google Scholar]
- Ulku, A.C.; Bruschini, C.; Michalet, X.; Weiss, S.; Charbon, E. A 512 × 512 SPAD image sensor with built-in gating for phasor based real-time siFLIM. Proc. Int. Image Sens. Workshop 2017, 25, 234–237. [Google Scholar]
- Ulku, A.C.; Bruschini, C.; Antolovic, I.M.; Kuo, Y.; Ankri, R.; Weiss, S.; Michalet, X.; Charbon, E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–12. [Google Scholar] [CrossRef]
- Ulku, A.C.; Bruschini, C.; Antolovic, I.M.; Weiss, S.; Michalet, X.; Charbon, E. Phasor-based widefield FLIM using a gated 512 × 512 single photon SPAD imager. Proc. SPIE 2019, 1088, 10882M. [Google Scholar]
- Gyongy, I.; Calder, N.; Davies, A.; Dutton, N.A.W.; Duncan, R.R.; Rickman, C.; Dalgarno, P.; Henderson, R.K. A 256 × 256, 100 kfps, 61% fill-factor SPAD image sensor for time-resolved microscopy applications. IEEE Trans. Electron Devices 2018, 65, 547–554. [Google Scholar] [CrossRef]
- Hirose, Y.; Koyama, S.; Okino, T.; Inoue, A.; Saito, S.; Nose, Y.; Ishii, M.; Yamahira, S.; Kasuga, S.; Mori, M.; et al. A 400 × 400-pixel 6 µm-pitch vertical avalanche photodiodes CMOS image sensor based on 150 ps-fast capacitive relaxation quenching in Geiger mode for synthesis of arbitrary gain images. In Proceedings of the IEEE International Conference on Solid-State Circuits Conference, San Francisco, CA, USA, 17–21 February 2019; pp. 104–105. [Google Scholar]
- Henderson, R.K.; Johnston, N.; Hutchings, S.W.; Gyongy, I.; Al Abbas, T.; Dutton, N.; Tyler, M.; Chan, S.; Leach, J. A 256 × 256 40 nm/90 nm CMOS 3D-stacked 120 dB dynamic-range reconfigurable timeresolved SPAD imager. In Proceedings of the IEEE International Conference on Solid-State Circuits Conference, San Francisco, CA, USA, 7–21 February 2019; pp. 106–107. [Google Scholar]
- Morimoto, K.; Wu, M.L.; Ardelean, A.; Charbon, E. Superluminal Motion-Assisted Four-Dimensional Light-in-Flight Imaging. Phys. Rev. X 2021, 11, 011005. [Google Scholar]
- Kekkonen, J.; Finnilä, M.A.J.; Heikkilä, J.; Anttonen, V.; Nissinen, I. Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor. Analyst 2019, 144, 6089–6097. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.; Röhlicke, T.; Rahn, H.J.; Erdmann, R.; Kell, G.; Ahlrichs, A.; Kernbach, M.; Schell, A.W.; Benson, O. Integrated multichannel photon timing instrument with very short dead time high throughput. Rev. Sci. Instrum. 2013, 84, 043102. [Google Scholar] [CrossRef]
- Rinnenthal, J.L.; Bornchen, C.; Radbruch, H.; Andresen, V.; Mossakowski, A.; Siffrin, V.; Seelemann, T.; Spiecker, H.; Moll, I.; Herz, J.; et al. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: Quantifying neuronal dysfunction in neuroinflammation. PLoS ONE 2013, 8, e60100. [Google Scholar] [CrossRef] [Green Version]
- Blacksberg, J.; Alerstam, E.; Cochrane, C.J.; Maruyama, Y.; Farmer, J.D. Miniature high-speed, low-pulse-energy ps Raman spectrometer for identification of minerals and organics in planetary science. Appl. Opt. 2020, 59, 433–444. [Google Scholar] [CrossRef]
- Usai, A.; Finlayson, N.; Gregory, C.D.; Campbell, C.J.; Henderson, R.K. Separating fluorescence from Raman spectra using a CMOS SPAD TCSPC line sensor for biomedical applications. Proc. SPIE 2019, 10873, 108730R. [Google Scholar]
- Ferraro, J.R.; Nakamoto, K.; Brown, C.W. Introductory Raman Spectroscopy, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Hernandez, G. Fabry-Perot Interferometers; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Lee, J.Y.; Hahn, J.W.; Lee, H.-W. Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with non uniform finite-size diffraction beam illuminations. JOSA A 2002, 19, 973–984. [Google Scholar] [CrossRef]
- Time-Correlated Single-Photon Counting Camera (Photon Force). Available online: https://www.photon-force.com/pf32-time-resolved-single-photon-counting-camera/ (accessed on 5 March 2021).
- Single Photon Counting Camera (MPD). Available online: http://www.micro-photon-devices.com/MPD/media/UserManuals/SPC3_usermanual.pdf (accessed on 5 March 2021).
- Pellegrini, S.; Rae, B. Fully industrialised single photon avalanche diodes. Proc. SPIE 2017, 10212, 102120D. [Google Scholar]
- Sinfield, J.V.; Colic, O.; Fagerman, D.; Monwuba, C. A low cost time-resolved raman spectroscopic sensing system enabling fluorescence rejection. Appl. Spectrosc. 2010, 64, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Kinoshita, S.; Kushida, T. Fluorescence rejection in Raman-spectroscopy by a gated single-photon counting method. Rev. Sci. Instrum. 1985, 56, 1195–1198. [Google Scholar] [CrossRef]
- Ariese, F.; Meuzelaar, H.; Kerssens, M.M.; Buijsa, J.B.; Gooijera, C. ps Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media Analyst. Def. Sci. J. 2009, 134, 1192–1197. [Google Scholar]
- Andor Intensified CCDs for Time-Resolved Spectroscopy. Available online: https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-istar-ccd-spectroscopy-specifications.pdf (accessed on 8 March 2021).
- Andor iStar sCMOS, Ultrafast Platform for Nanosecond Time-Resolved Imaging and Spectroscopy. Available online: https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-istar-scmos-specifications.pdf (accessed on 8 March 2021).
- Stanford ps High Speed ICCD Camera Family. Available online: https://stanfordcomputeroptics.com/products/ps-iccd.html#technical-details (accessed on 8 March 2021).
- Stanford Nanosecond High Speed ICCD Camera Family. Available online: https://stanfordcomputeroptics.com/products/nanosecond-iccd.html#technical-details (accessed on 8 March 2021).
- Princeton PI-MAX 4. Available online: https://www.princetoninstruments.com/wp-content/uploads/2020/04/PIMAX4_1024i_datasheet.pdf (accessed on 8 March 2021).
- Gulati, K.K.; Gulia, S.; Gambhir, T.; Kumar, N.; Gambhir, V.; Reddy, M.N. Standoff Detection and Identification of Explosives and Hazardous Chemicals in Simulated Real Field Scenario using Time Gated Raman Spectroscopy. Def. Sci. J. 2019, 69, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Chen, Y.H.; Li, J.; Jiang, J.; Ni, Z.; Liu, Z.S. Time-resolved fluorescence spectroscopy of oil spill detected by ocean lidar. Proc. SPIE 2016, 10155, 101550Q. [Google Scholar]
- Sawosz, P.; Wojtkiewicz, S.; Kacprzak, M.; Zieminska, E.; Morawiec, M.; Maniewski, R.; Liebert, A. Towards in-vivo assessment of fluorescence lifetime: Imaging using time-gated intensified CCD camera. Biocybern Biomed. Eng. 2018, 38, 966–974. [Google Scholar] [CrossRef]
- Walczak, R.; Kubicki, W.; Dziuban, J. Low cost fluorescence detection using a CCD array and image processing for on-chip gel electrophoresis. Sens. Actuator B 2017, 240, 46–54. [Google Scholar] [CrossRef]
- Dussault, D.; Hoess, P. Noise performance comparison of ICCD with CCD and EMCCD cameras. Proc. SPIE 2004, 5563, 195–204. [Google Scholar]
- Angelini, F.; Di Frischia, S.; Chiuri, A.; Colao, F. Maximization of Raman signal in standoff detection under eye-safe conditions. Proc. SPIE 2019, 11166, 1116609. [Google Scholar]
- Tkachenko, N. Optical Spectroscopy Methods and Instrumentations, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hamamatsu Streak Camera—Technical Information. Available online: https://www.hamamatsu.com/eu/en/product/photometry-systems/streak-camera/related-documents/index.html (accessed on 5 March 2021).
- Tahara, T.; Hamaguchi, H.O. ps Raman Spectroscopy Using a Streak Camera. Appl. Spectrosc. 1993, 47, 391–398. [Google Scholar] [CrossRef]
- Efremov, E.V.; Buijs, J.B.; Gooijer, C.; Ariese, F. Fluorescence rejection in resonance spectroscopy using a ps-gated intensified charge-coupled device camera. Appl. Spectrosc. 2007, 61, 571–578. [Google Scholar] [CrossRef]
- Macleod, N.A.; Matousek, P. Deep Noninvasive Raman Spectroscopy of Turbid Media. Appl. Spectrosc. 2008, 62, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, A.J.; Cooper, J.L.; Profeta, L.T.M.; Ford, A.R. Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection. Appl. Spectrosc. 2016, 70, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Hain, R.; Kahler, C.J.; Tropea, C. Comparison of CCD, CMOS and intensified cameras. Exp. Fluids 2007, 42, 403–411. [Google Scholar] [CrossRef]
- Genack, A.Z. Electro-optic phase-sensitive detection of optical-emission and scattering. Appl. Phys. Lett. 1985, 46, 341–343. [Google Scholar] [CrossRef]
- Demas, J.N.; Keller, R.A. Enhancement of luminescence and Raman-spectroscopy by phase-resolved background suppression. Anal. Chem. 1985, 57, 538–545. [Google Scholar] [CrossRef]
- Wirth, M.J.; Chou, S.H. Comparison of time and frequency-domain methods for rejecting fluorescence from Raman-spectra. Anal. Chem. 1988, 60, 1882–1886. [Google Scholar] [CrossRef]
- Canetta, E.; Mazilu, M.; DeLuca, A.C.; Carruthers, A.E.; Dholakia, K.; Neilson, S.; Sargeant, H.; Briscoe, T.; Herrington, C.S.; Riches, A.C. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples. J. Biomed. Opt. 2011, 16, 037002. [Google Scholar] [CrossRef] [Green Version]
- Praveen, B.B.; Steuwe, C.; Mazilu, M.; Dholakia, K.; Mahajan, S. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection. Analyst 2013, 138, 2816–2820. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E.J.; Bourguignon, E.S.O.; Dennis, A. Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 1998, 123, 1729–1734. [Google Scholar] [CrossRef]
- Osticioli, I.; Zoppi, A.; Castellucci, E.M. Shift-excitation Raman difference spectroscopy-difference deconvolution method for the luminescence background rejection from Raman spectra of solid samples. Appl. Spectrosc. 2007, 61, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Nishijo, J.; Umemura, J. Separation of Raman spectra from fluorescence emission background by principal component analysis. Chem. Phys. Lett. 2000, 317, 642–646. [Google Scholar] [CrossRef]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar] [CrossRef]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H.; Newbery, R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge-detection, and FFT filtering techniques. Appl. Spectrosc. 1995, 49, 630–638. [Google Scholar] [CrossRef]
- Zhang, D.M.; Ben-Amotz, D. Enhanced chemical classification of Raman images in the presence of strong fluorescence interference. Appl. Spectrosc. 2000, 54, 1379–1383. [Google Scholar] [CrossRef]
- Mazet, V.; Carteret, C.; Brie, D.; Idier, J.; Humbert, B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemom. Intell. Lab. Syst. 2005, 76, 121–133. [Google Scholar] [CrossRef]
- Galloway, C.M.; LeRu, E.C.; Etchegoin, P.G. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc. 2009, 63, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.G.; Jiang, T.; Shen, A.G.; Li, W.; Wang, X.P.; Hu, J.M. A background elimination method based on wavelet transform for Raman spectra. Chemom. Intell. Lab. Syst. 2007, 85, 94–101. [Google Scholar] [CrossRef]
- Leger, M.N.; Ryder, A.G. Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures. Appl. Spectrosc. 2006, 60, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Pandya, A.K.; Serhatkulu, G.K.; Weber, R.E.; Dai, H.; Thakur, J.S.; Naik, V.M.; Naik, R.; Auner, G.W.; Rabah, R.; et al. A robust method for automated background subtraction of tissue fluorescence. J. Raman Spectrosc. 2007, 38, 1199–1205. [Google Scholar] [CrossRef] [Green Version]
Asymmetry Factor | 0 | 0.2 | 0.4 | 0.6 | 0.8 |
---|---|---|---|---|---|
Best gating/FWHM | 1.72 | 1.68 | 1.66 | 1.65 | 1.65 |
0.99922 | 0.99881 | 0.99801 | 0.99734 | 0.99723 |
d [m] | 1 | 10 | 100 | 1000 | |
---|---|---|---|---|---|
T [ps] | |||||
1 | |||||
10 | |||||
100 |
Parameter | Symbol | Value | Uncertainty | Notes |
---|---|---|---|---|
refractive index | n | 2.6 | ||
non-linear refractive index | m/W | underestimation | ||
non-linear medium thickness | L | m | m | underestimation |
wavelength | m | m | laser line broadening | |
beam diameter in non-linear medium | d | m | NO | from beam shaper datasheet |
pulse duration | T | s | NO | — |
average power | W | 0.34 W | NO | — |
pulse repetition rate | PRR | Hz | NO | 80 MHz (from laser datasheet) |
average power density | I | estimated from W, PRR, T, d | 10–50% | — |
Sensor | Year | SPAD Array | Technology [nm] | Pixel Pitch [m] | Fill Factor [%] | PDE [%] | DCR [cps/m] |
---|---|---|---|---|---|---|---|
[72] | 2003 | 8 × 4 | 800 | – | <1 | 0.2 | 1.6 |
[73,74,75,76,77,78,79] | 2007 | 8 × 1 | – | 198 | 5 | 2.5 | 1.0 |
[80,81] | 2007 | 64 × 64 | 350/HV | 40 | <1 | 0.1 | 71.0 |
[82,83,84] | 2008 | 128 × 128 | 350/HV | 25 | – | – | 17.0 |
[85,86] | 2009 | 4 × 4 | 350/HV | 36 | <1 | – | 1.0 |
[87,88,89] | 2009 | 60 × 48 | 350/HV | 85 | <1 | 0.1 | 7.0 |
[90,91,92,93] | 2009 | 32 × 32 | 350/HV | 100 | 3.1 | 1.3 | 12.7 |
[43,94,95,96,97,98,99,100,101,102,103,104] | 2009 | 32 × 32 | 130/CIS | 50 | 1 | 0.4 | 4.0 |
[44] | 2009 | 64 × 4 | 350/HV | 26 | 34 | 10.9 | 4.6 |
[105,106,107,108] | 2009 | 32 × 32 | 350/HV | 30 | 3.1 | 1.1 | 5.0 |
[109] | 2009 | 7 × 2 | 350/HV | – | – | – | 13.0 |
[110,111] | 2011 | 128 × 128 | 350/HV | 25 | – | – | 6.6 |
[112,113] | 2011 | 160 × 128 | 130/CIS | 50 | 1 | 0.3 | 2.0 |
[114,115,116] | 2011 | 32 × 32 | 350/HV | 25 | 20.3 | – | 5.4 |
[117,118] | 2012 | 32 × 32 | 350/3D | 50 | 75.4 | – | 39.7 |
[119,120,121] | 2012 | 32 × 32 | 130/CIS | 22 | 10 | – | 13.7 |
[122,123] | 2013 | 64 × 64 | 130 | 48 | <1 | 0.3 | 28.0 |
[124] | 2013 | 416 × 4 × 4 | 350/HV | 55.6 | 17.0 | 39.0 | |
[56,125] | 2013 | 1024 × 8 | 350/HV | 24 | 44.3 | 9.6 | 29.0 |
[57,58,126,127,128] | 2013 | 128 × 8 | 350/HV | 33 | 23 | 5.8 | 71.0 |
[129,130,131,132] | 2013 | 720 × 16 × 8 | 130/CIS | 19 | 42.9 | 12.0 | 6.2 |
[70] | 2013 | 10 × 43 | 350/HV | 67 | 4 | – | |
[133,134,135,136,137,138] | 2014 | 512 × 128 | 350/HV | 24 | – | – | 12.0 |
[59,64] | 2014 | 1 | 130 | 10 | 9.8 | 3 | – |
[51] | 2014 | 32 × 32 | 350 | 150 | 3.14 | 20–55% | 120 cps |
[139] | 2015 | 416 × 18 × 9 | 350/HV | 57 | 18.6 | 43.0 | |
[140,141] | 2015 | 256 × 2 | 130/CIS | 24 | 43.7 | – | 5.4 |
[142] | 2015 | 256 × 256 | 130/CIS | 8 | 19.6 | – | 4.0 |
[143,144] | 2015 | 400 × 1 | 130/3D | 11 | 23.3 | 2.8 | 357.0 |
[145] | 2016 | 128 × 120 | 65/3D | 8 | 45 | 12.4 | 36.2 |
[146] | 2016 | 72 × 60 | 180 | 35 | 14.4 | 0.4 | 2.3 |
[147,148] | 2016 | 256 × 1 | 350/HV | 24 | 40 | 13.6 | 11.0 |
[149] | 2016 | 160 × 120 | 350/HV | 15 | 21 | – | 12.0 |
[150,151,152] | 2016 | 320 × 240 | 130/CIS | 8/16 | – | – | 3.0 |
[153] | 2017 | 1024 × 16 | 130/CIS | 24 | 49.3 | – | – |
[61,62] | 2017 | 256 × 16 | 350/HV | 35 | 26 | – | – |
[154] | 2017 | 256 × 8 | 130/CIS | 24 | 43.7 | – | 5.4 |
[50,155,156,157] | 2017 | 32 × 32 | 180 | 28 | 28 | 13.4 | 0.6 |
[158,159,160] | 2017 | 512 × 512 | 180 | 16 | 10.5 | 5.2 | 0.3 |
[161] | 2018 | 256 × 256 | 130/CIS | 16 | 61 | – | 51.0 |
[162] | 2019 | 400 × 400 | 65/CIS | 6 | 70 | – | 100 cps |
[163] | 2019 | 256 × 256 | 40/90/3D | 9.2 | 51.0 | 11.7 | 20 cps |
[71,164] | 2020 | 1024 × 1000 | 180 | 9.4 | 7.0/13.4 | 0.7/3.6 | 0.4/2.0 cps |
Resolution [nm] | a | b | c | RP = 1 |
---|---|---|---|---|
20 | −3002.6 | 5881.7 | −2878.7 | R = 0.994 |
2 | −15,916,262.3 | 31,822,936.8 | −15,906,674 | R = 0.99994 |
Photocathode | Type | Peak QE | Min. Gating Speed |
---|---|---|---|
1 | Gen 2 | 18% | <2 ns |
2 | Gen 2 | 16% | <5 ns |
3 | Gen 2 | 13.5% | <50 ns |
4 | Gen 3 | 48% | <2 ns |
5 | Gen 3 | 26% | <2 ns |
6 | Gen 2 | 25% | <100 ns |
7 | Gen 3 | 4% | <3 ns |
8 | Gen 3 | 40% | <2 ns |
9 | Gen 2 | 22% | <2 ns |
MODELS | |||
---|---|---|---|
iStar CCD 320, 334, 340, sCMOS | Stanford High Resolution: ns, ps | PI-MAX4:1024i | |
Pixel Matrix | 1024 × 256, 1024 × 1024, 2048 × 512, 2560 × 2160 | 1360 × 1024 | 1024 × 1024 |
Pixel Size[m] | 26, 13, 13.5, 6.5 | 4.7 | 12.8 |
Min. exposure time | 2 ns | 1.2 ns (down to 200 ps) | 2 ns (down to 200 ps) |
Max. Frame rate (fps) | 15.9, 4.2, 2.5, 50 | 14.0 (12/14 bit mode), 17.5 (8 bit mode) | 26 |
Optical shutter repetition rate (Maximum photocathode repetition rate) | standard: 5 and 500 kHz, 3.3 MHz (burst mode) | standard: 200 kHz, 3.3 MHz (burst mode) | 1 MHz; 100 kHz with ps gating |
Active Pixels | 18 mm tube 690 × 255 pixels 18 × 6.6 mm (25 mm tube 960 × 255 pixels 25 × 6.6 mm) 18 mm tube 1024 × 1024 pixels 13.3 × 13.3 mm 18 mm tube 1330 × 512 pixels 18 × 6.9 mm (25 mm tube 1850 × 512 pixels 25 × 6.9 mm) 18 mm tube 2554 × 2154 16.6 × 14.0 mm (25 mm tube 2560 × 2160 16.6 × 14.0 mm) | 18 mm: 14.4 × 10.8 mm | 13.1 × 13.1 mm |
Dynamic data range | 12-bit and 16-bit | 14-bit up to 21-bit | 16 bit |
CCD output | Up to 16 bit, Up to 32 bit | standard: 12 bit—optional: 14 bit | 16 bit |
Jitter | <0.035 ns | <0.02 ns, <0.01 ns | <0.035 ns |
Gain | Depends on several elements (e.g., phosphor screen, intensifiers) | ||
Phosphor screen | standard: P43, optional: P46 | standard: P43, optional: P46, P47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiuri, A.; Angelini, F. Fast Gating for Raman Spectroscopy. Sensors 2021, 21, 2579. https://doi.org/10.3390/s21082579
Chiuri A, Angelini F. Fast Gating for Raman Spectroscopy. Sensors. 2021; 21(8):2579. https://doi.org/10.3390/s21082579
Chicago/Turabian StyleChiuri, Andrea, and Federico Angelini. 2021. "Fast Gating for Raman Spectroscopy" Sensors 21, no. 8: 2579. https://doi.org/10.3390/s21082579
APA StyleChiuri, A., & Angelini, F. (2021). Fast Gating for Raman Spectroscopy. Sensors, 21(8), 2579. https://doi.org/10.3390/s21082579