Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Spatiotemporal Gait Parameters
2.4. Muscle Synergy
2.5. Statistical Analysis
Participant | Gender | Age (mo) | CA (mo) | WO (mo) | Distribution | Subtype | GMFCS | Scores Brain Damage (Side) | BW (kg) | N Strides | Speed (km/h) |
---|---|---|---|---|---|---|---|---|---|---|---|
CP1 | M | 11.6 | 10.6 | - | Uni R | spastic | NS | b2 (bi) | 9.7 | 17 | 0.39 |
CP2 | F | 14.8 | 15.1 | - | Uni L | spastic | NS | 5 (bi) | 10.8 | 24 | 0.60 |
CP3 | M | 21.0 | 21.4 | - | Uni L | spastic | NS | 6 (uni R) | 9.3 | 29 | 0.63 |
CP4 | F | 17.8 | 17.9 | - | Bi (L > R) | spastic | NS | b2 (bi) | 10.7 | 45 | 0.82 |
CP5 | F | 20.2 | 17.2 | - | Bi (R > L) | spastic | NS | 5 (uni L) | 7.7 | 31 | 0.60 |
CP6 | M | 6.5 | 6.6 | - | Bi | spastic | NS | b2 (bi) | 7.3 | 22 | 0.64 |
CP7 | M | 9.8 | 6.5 | - | Bi | spastic | NS | 4 (bi) | - | 27 | 0.80 |
CP8 | F | 8.5 | 8.9 | - | Bi | undef | NS | b2 (bi) | 8.8 | 43 | 0.61 |
CP9 | F | 42.8 | 41.2 | - | Bi | spastic | III | 4 (bi) | 14 | 31 | 0.80 |
CP10 | F | 44.9 | 43.7 | - | Bi | spastic | II | 4 (bi) | 11.4 | 40 | 0.62 |
CP SW | 6 F; 4 M | 19.8 (13.6) | 18.9 (13.4) # | - | - | - | - | - | 10.0 (2.1) | 31 (9) | 0.65 (0.13) |
CP11 | M | 23.8 | 22.2 | 17.1 | Uni R | spastic | I | 5 (uni L) | 11.1 | 35 | 1.77 |
CP12 | M | 35.6 | 35.8 | 16.1 | Uni R | spastic | I | b1 (uni L) | 13.4 | 27 | 2.62 |
CP13 | M | 41.0 | 38.0 | 16.0 | Uni R | spastic | I | 5 (uni L) | 14.6 | 40 | 2.33 |
CP14 | M | 47.2 | 45.5 | 15.6 | Uni R | spastic | I | 5 (uni L) | 15.2 | 45 | 3.87 |
CP15 | F | 22.3 | 22.3 | 15.0 | Bi (L > R) | spastic | I | 2 (bi) | 10.6 | 42 | 1.66 |
CP16 | M | 27.8 | 26.9 | 19.1 | Bi (R > L) | spastic | I | 4 (bi) | 14.1 | 66 | 2.75 |
CP17 | M | 38.6 | 38.9 | 16.1 | Bi (R > L) | spastic | I | b2 (bi) | 14.0 | 41 | 4.01 |
CP18 | M | 18.3 | 18.6 | 15.0 | Bi | spastic | I | 4 (bi) | 10.9 | 18 | 4.00 |
CP19 | F | 34.4 | 29.9 | 24.4 | Bi | ataxic | II | b2 | 10.0 | 59 | 2.37 |
CP20 | M | 34.4 | 29.9 | 26.7 | Bi | spastic | II | 4 (bi) | 11.8 | 27 | 2.86 |
CP IW | 2 F; 8 M | 32.3 (9.1) | 30.8 (8.6) | 18.1 (4.1) * | - | - | - | - | 12.6 (1.9) | 40 (15) | 2.82 (0.87) |
TD1 | F | 6.3 | 6.2 | - | - | - | - | - | 6.8 | 17 | 0.41 |
TD2 | F | 7.5 | 7.8 | - | - | - | - | - | 9.1 | 33 | 0.44 |
TD3 | M | 9.7 | 10.2 | - | - | - | - | - | 9.7 | 80 | 0.55 |
TD4 | M | 9.8 | 9.7 | - | - | - | - | - | 8.5 | 59 | 0.60 |
TD5 | F | 10.0 | 10.0 | - | - | - | - | - | 8.9 | 95 | 0.54 |
TD6 | M | 10.2 | 10.1 | - | - | - | - | - | 10.2 | 79 | 0.69 |
TD7 | F | 10.4 | 10.2 | - | - | - | - | - | 9.3 | 66 | 0.61 |
TD8 | F | 10.6 | 9.7 | - | - | - | - | - | 9.0 | 23 | 0.90 |
TD9 | F | 11.2 | 11.6 | - | - | - | - | - | 9.6 | 43 | 0.66 |
TD10 | M | 12.0 | 12.0 | - | - | - | - | - | 11.0 | 21 | 0.46 |
TD SW | 6 F; 4 M | 9.8 (1.7) # | 9.8 (1.7) | - | - | - | - | - | 9.2 (1.1) | 52 (28) | 0.59 (0.14) |
TD11 | M | 16.5 | 16.5 | 10.7 | - | - | - | - | 11.3 | 27 | 2.40 |
TD12 | F | 17.5 | 17.8 | 11.6 | - | - | - | - | 10.7 | 38 | 2.76 |
TD13 | F | 19.3 | 19.3 | 12.9 | - | - | - | - | - | 93 | 1.68 |
TD14 | F | 19.7 | 19.6 | 12.9 | - | - | - | - | 10.4 | 49 | 2.99 |
TD15 | F | 20.1 | 20.1 | 13.9 | - | - | - | - | 10.3 | 86 | 2.48 |
TD16 | M | 20.8 | 20.4 | 14.9 | - | - | - | - | 13.0 | 66 | 3.35 |
TD17 | F | 24.4 | 24.3 | 11.7 | - | - | - | - | 11.3 | 45 | 1.94 |
TD18 | M | 27.5 | 27.3 | 11.3 | - | - | - | - | 13.0 | 21 | 3.16 |
TD19 | F | 47.1 | 47.2 | 14.3 | - | - | - | - | 16.0 | 49 | 3.27 |
TD20 | M | 53.5 | 52.4 | 11.3 | - | - | - | - | 15.5 | 28 | 3.47 |
TD IW | 6 F; 4 M | 26.6 (12.9) | 26.5 (12.7) | 12.6 (1.4) * | - | - | - | - | 12.4 (2.2) | 50 (25) | 2.76 (0.63) |
3. Results
3.1. Spatiotemporal Gait Parameters
3.2. Muscle Synergy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Himmelmann, K.; Uvebrant, P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007–2010. Acta Paediatr. 2018, 107, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef]
- Cans, C. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Dev. Med. Child Neurol. 2000, 42, 816–824. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Adolph, K.E.; Robinson, S.R. The road to walking: What learning to walk tells us about development. In The Oxford Handbook of Developmental Psychology; Zelazo, P.D., Ed.; Oxford University Press: New York, NY, USA, 2013; Volume 1, pp. 403–443. [Google Scholar]
- Yang, J.F.; Livingstone, D.; Brunton, K.; Kim, D.; Lopetinsky, B.; Roy, F.; Zewdie, E.; Patrick, S.K.; Andersen, J.; Kirton, A. Training to enhance walking in children with cerebral palsy: Are we missing the window of opportunity? In Seminars In Pediatric Neurology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 106–115. [Google Scholar]
- Dominici, N.; Ivanenko, Y.P.; Cappellini, G.; d’Avella, A.; Mondi, V.; Cicchese, M.; Fabiano, A.; Silei, T.; Di Paolo, A.; Giannini, C.; et al. Locomotor primitives in newborn babies and their development. Science 2011, 334, 997–999. [Google Scholar] [CrossRef]
- Hart, C.B.; Giszter, S.F. A neural basis for motor primitives in the spinal cord. J. Neurosci. 2010, 30, 1322–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzi, E.; Cheung, V.C. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanenko, Y.P.; Cappellini, G.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Coordination of locomotion with voluntary movements in humans. J. Neurosci. 2005, 25, 7238–7253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuman, B.; Goudriaan, M.; Bar-On, L.; Schwartz, M.H.; Desloovere, K.; Steele, K.M. Repeatability of muscle synergies within and between days for typically developing children and children with cerebral palsy. Gait Posture 2016, 45, 127–132. [Google Scholar] [CrossRef]
- Shuman, B.R.; Goudriaan, M.; Desloovere, K.; Schwartz, M.H.; Steele, K.M. Associations between Muscle Synergies and Treatment Outcomes in Cerebral Palsy Are Robust Across Clinical Centers. Arch. Phys. Med. Rehabil. 2018, 99, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.M.; Munger, M.E.; Peters, K.M.; Shuman, B.R.; Schwartz, M.H. Repeatability of electromyography recordings and muscle synergies during gait among children with cerebral palsy. Gait Posture 2019, 67, 290–295. [Google Scholar] [CrossRef]
- Steele, K.M.; Rozumalski, A.; Schwartz, M.H. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol. 2015, 57, 1176–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashiguchi, Y.; Ohata, K.; Osako, S.; Kitatani, R.; Aga, Y.; Masaki, M.; Yamada, S. Number of Synergies Is Dependent on Spasticity and Gait Kinetics in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2018, 30, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, F.; Cao, S.; Zhang, X.; Wu, D.; Chen, X. Muscle synergy analysis in children with cerebral palsy. J. Neural Eng. 2015, 12, 046017. [Google Scholar] [CrossRef] [PubMed]
- Bekius, A.; Bach, M.M.; van der Krogt, M.M.; de Vries, R.; Buizer, A.I.; Dominici, N. Muscle Synergies During Walking in Children with Cerebral Palsy: A Systematic Review. Front. Physiol. 2020, 11, 632. [Google Scholar] [CrossRef] [PubMed]
- Leonard, C.T.; Hirschfeld, H.; Forssberg, H. The development of independent walking in children with cerebral palsy. Dev. Med. Child Neurol. 1991, 33, 567–577. [Google Scholar] [CrossRef]
- Berger, W. Characteristics of locomotor control in children with cerebral palsy. Neurosci. Biobehav. Rev. 1998, 22, 579–582. [Google Scholar] [CrossRef]
- Meyns, P.; Desloovere, K.; Van Gestel, L.; Massaad, F.; Smits-Engelsman, B.; Duysens, J. Altered arm posture in children with cerebral palsy is related to instability during walking. Eur. J. Paediatr. Neurol. 2012, 16, 528–535. [Google Scholar] [CrossRef]
- Cahill-Rowley, K.; Rose, J. Etiology of impaired selective motor control: Emerging evidence and its implications for research and treatment in cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 522–528. [Google Scholar] [CrossRef]
- Steele, K.M.; Tresch, M.C.; Perreault, E.J. The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci. 2013, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Damiano, D. Muscle synergies: Input or output variables for neural control? Dev. Med. Child Neurol. 2015, 57, 1091–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadders-Algra, M. General movements: A window for early identification of children at high risk for developmental disorders. J. Pediatr. 2004, 145, S12–S18. [Google Scholar] [CrossRef] [PubMed]
- Prosser, L.A.; Lee, S.C.; VanSant, A.F.; Barbe, M.F.; Lauer, R.T. Trunk and hip muscle activation patterns are different during walking in young children with and without cerebral palsy. Phys. Ther. 2010, 90, 986–997. [Google Scholar] [CrossRef]
- Himmelmann, K.; Hagberg, G.; Beckung, E.; Hagberg, B.; Uvebrant, P. The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr. 2005, 94, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Hielkema, T.; Hamer, E.G.; Reinders-Messelink, H.A.; Maathuis, C.G.; Bos, A.F.; Dirks, T.; van Doormaal, L.; Verheijden, J.; Vlaskamp, C.; Lindeman, E. LEARN 2 MOVE 0–2 years: Effects of a new intervention program in infants at very high risk for cerebral palsy; a randomized controlled trial. BMC Pediatr. 2010, 10, 76. [Google Scholar] [CrossRef]
- Hamer, E.G.; Vermeulen, R.J.; Dijkstra, L.J.; Hielkema, T.; Kos, C.; Bos, A.F.; Hadders-Algra, M. Slow pupillary light responses in infants at high risk of cerebral palsy were associated with periventricular leukomalacia and neurological outcome. Acta Paediatr. 2016, 105, 1493–1501. [Google Scholar] [CrossRef]
- de Vries, L.S.; Eken, P.; Dubowitz, L.M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res. 1992, 49, 1–6. [Google Scholar] [CrossRef]
- de Vries, L.S.; Roelants-van Rijn, A.M.; Rademaker, K.J.; van Haastert, I.C.; Beek, F.J.; Groenendaal, F. Unilateral parenchymal haemorrhagic infarction in the preterm infant. Eur. J. Paediatr. Neurol. 2001, 5, 139–149. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress: A clinical and electroencephalographic study. Arch. Neurol. 1976, 33, 696–705. [Google Scholar] [CrossRef]
- Dominici, N.; Ivanenko, Y.P.; Lacquaniti, F. Control of foot trajectory in walking toddlers: Adaptation to load changes. J. Neurophysiol. 2007, 97, 2790–2801. [Google Scholar] [CrossRef] [Green Version]
- Ivanenko, Y.P.; Dominici, N.; Cappellini, G.; Lacquaniti, F. Kinematics in newly walking toddlers does not depend upon postural stability. J. Neurophysiol. 2005, 94, 754–763. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 2004, 556, 267–282. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, G.; Ivanenko, Y.P.; Martino, G.; MacLellan, M.J.; Sacco, A.; Morelli, D.; Lacquaniti, F. Immature Spinal Locomotor Output in Children with Cerebral Palsy. Front. Physiol. 2016, 7, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Oviedo, G.; Macpherson, J.M.; Ting, L.H. Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol. 2006, 96, 1530–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandvoort, C.S.; van Dieen, J.H.; Dominici, N.; Daffertshofer, A. The human sensorimotor cortex fosters muscle synergies through cortico-synergy coherence. Neuroimage 2019, 199, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Kerkman, J.N.; Bekius, A.; Boonstra, T.W.; Daffertshofer, A.; Dominici, N. Muscle synergies and coherence networks reflect different modes of coordination during walking. Front. Physiol. 2020, 11, 751. [Google Scholar] [CrossRef]
- Bach, M.M.; Daffertshofer, A.; Dominici, N. The development of mature gait patterns in children during walking and running. Eur. J. Appl. Physiol. 2021, 121, 1073–1085. [Google Scholar] [CrossRef]
- Frère, J.; Hug, F. Between-subject variability of muscle synergies during a complex motor skill. Front. Comput. Neurosci. 2012, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Israely, S.; Leisman, G.; Machluf, C.C.; Carmeli, E. Muscle Synergies Control during Hand-Reaching Tasks in Multiple Directions Post-stroke. Front. Comput. Neurosci. 2018, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Maclellan, M.J.; Ivanenko, Y.P.; Massaad, F.; Bruijn, S.M.; Duysens, J.; Lacquaniti, F. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans. J. Neurophysiol. 2014, 111, 1541–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.; Rymer, W.Z.; Perreault, E.J.; Yoo, S.B.; Beer, R.F. Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 2013, 109, 768–781. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuman, B.R.; Goudriaan, M.; Desloovere, K.; Schwartz, M.H.; Steele, K.M. Muscle synergies demonstrate only minimal changes after treatment in cerebral palsy. J. Neuroeng. Rehabil. 2019, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Sylos-Labini, F.; La Scaleia, V.; Cappellini, G.; Fabiano, A.; Picone, S.; Keshishian, E.S.; Zhvansky, D.S.; Paolillo, P.; Solopova, I.A.; d’Avella, A. Distinct locomotor precursors in newborn babies. Proc. Natl. Acad. Sci. USA 2020, 117, 9604–9612. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Cao, S.; Wu, D.; Zhang, X.; Chen, X. Gait synergetic neuromuscular control in children with cerebral palsy at different gross motor function classification system levels. J. Neurophysiol. 2019, 121, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Torres-Oviedo, G.; Ting, L.H. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol. 2010, 103, 3084–3098. [Google Scholar] [CrossRef] [Green Version]
- Fiori, S.; Cioni, G.; Klingels, K.; Ortibus, E.; Van Gestel, L.; Rose, S.; Boyd, R.N.; Feys, H.; Guzzetta, A. Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 839–845. [Google Scholar] [CrossRef]
- Friel, K.M.; Williams, P.T.; Serradj, N.; Chakrabarty, S.; Martin, J.H. Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Front. Neurol. 2014, 5, 229. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Bulea, T.C.; Damiano, D.L. Children with Cerebral Palsy Have Greater Stride-to-Stride Variability of Muscle Synergies During Gait Than Typically Developing Children: Implications for Motor Control Complexity. Neurorehabil. Neural Repair 2018, 32, 834–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudriaan, M.; Shuman, B.R.; Steele, K.M.; Van den Hauwe, M.; Goemans, N.; Molenaers, G.; Desloovere, K. Non-neural Muscle Weakness Has Limited Influence on Complexity of Motor Control during Gait. Front. Hum. Neurosci. 2018, 12, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashiguchi, Y.; Ohata, K.; Kitatani, R.; Yamakami, N.; Sakuma, K.; Osako, S.; Aga, Y.; Watanabe, A.; Yamada, S. Merging and Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after Subacute Stroke. Neural Plast. 2016, 2016, 5282957. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Ogawa, T.; Kawashima, N.; Shinya, M.; Nakazawa, K. Distinct sets of locomotor modules control the speed and modes of human locomotion. Sci. Rep. 2016, 6, 36275. [Google Scholar] [CrossRef]
- Kibushi, B.; Hagio, S.; Moritani, T.; Kouzaki, M. Speed-Dependent Modulation of Muscle Activity Based on Muscle Synergies during Treadmill Walking. Front. Hum. Neurosci. 2018, 12, 4. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekius, A.; Zandvoort, C.S.; Kerkman, J.N.; van de Pol, L.A.; Vermeulen, R.J.; Harlaar, J.; Daffertshofer, A.; Buizer, A.I.; Dominici, N. Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy. Sensors 2021, 21, 2714. https://doi.org/10.3390/s21082714
Bekius A, Zandvoort CS, Kerkman JN, van de Pol LA, Vermeulen RJ, Harlaar J, Daffertshofer A, Buizer AI, Dominici N. Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy. Sensors. 2021; 21(8):2714. https://doi.org/10.3390/s21082714
Chicago/Turabian StyleBekius, Annike, Coen S. Zandvoort, Jennifer N. Kerkman, Laura A. van de Pol, R. Jeroen Vermeulen, Jaap Harlaar, Andreas Daffertshofer, Annemieke I. Buizer, and Nadia Dominici. 2021. "Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy" Sensors 21, no. 8: 2714. https://doi.org/10.3390/s21082714
APA StyleBekius, A., Zandvoort, C. S., Kerkman, J. N., van de Pol, L. A., Vermeulen, R. J., Harlaar, J., Daffertshofer, A., Buizer, A. I., & Dominici, N. (2021). Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy. Sensors, 21(8), 2714. https://doi.org/10.3390/s21082714