Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation †
Abstract
:1. Introduction
2. Related Works
2.1. Spatial Division of Transmitters
2.2. Atmospheric Phenomena in Optical Wireless Communication
3. Proposal of Optical Camera Communication-Based Sensor Networks Architecture
3.1. Optical Wireless Channel
3.2. Technical Requirements and Potential Applications of OCC-Based Wireless Sensor Networks
4. Experimental Evaluation
4.1. Physical Layer Strategies
4.2. Description of the Experiments
4.2.1. Emulation of Atmospheric Conditions in Laboratory
4.2.2. Real Conditions of Sandstorm Using Large Optical Devices
4.2.3. Real Outdoor Scenario in Sub-Pixel Setting
4.3. Discussion of the Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cahyadi, W.A.; Chung, Y.H.; Ghassemlooy, Z.; Hassan, N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics 2020, 9, 1339. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Almadani, Y.; Plets, D.; Bastiaens, S.; Joseph, W.; Ijaz, M.; Ghassemlooy, Z.; Rajbhandari, S. Visible Light Communications for Industrial Applications—Challenges and Potentials. Electronics 2020, 9, 2157. [Google Scholar] [CrossRef]
- Saeed, N.; Guo, S.; Park, K.H.; Al-Naffouri, T.Y.; Alouini, M.S. Optical camera communications: Survey, use cases, challenges, and future trends. Phys. Commun. 2019, 37, 100900. [Google Scholar] [CrossRef] [Green Version]
- Saha, N.; Ifthekhar, M.S.; Le, N.T.; Jang, Y.M. Survey on optical camera communications: Challenges and opportunities. IET Optoelectron. 2015, 9, 172–183. [Google Scholar] [CrossRef]
- Le, N.T.; Hossain, M.; Jang, Y.M. A survey of design and implementation for optical camera communication. Signal Process. Image Commun. 2017, 53, 95–109. [Google Scholar] [CrossRef]
- Jang, M. IEEE 802.15 WPAN 15.7 Amendment-Optical Camera Communications Study Group (SG 7a). 2019. Available online: https://www.ieee802.org/15/pub/SG7a.html (accessed on 12 April 2021).
- Kim, Y.H.; Cahyadi, W.A.; Chung, Y.H. Experimental Demonstration of VLC-Based Vehicle-to-Vehicle Communications Under Fog Conditions. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Chaudhary, N.; Alves, L.N.; Ghassemlooy, Z. Current Trends on Visible Light Positioning Techniques. In Proceedings of the 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC), Tehran, Iran, 27–28 April 2019; pp. 100–105. [Google Scholar]
- Chaudhary, N.; Younus, O.I.; Alves, L.N.; Ghassemlooy, Z.; Zvanovec, S.; Le-Minh, H. An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy. Sensors 2021, 21, 920. [Google Scholar] [CrossRef]
- Palacios Játiva, P.; Román Cañizares, M.; Azurdia-Meza, C.A.; Zabala-Blanco, D.; Dehghan Firoozabadi, A.; Seguel, F.; Montejo-Sánchez, S.; Soto, I. Interference Mitigation for Visible Light Communications in Underground Mines Using Angle Diversity Receivers. Sensors 2020, 20, 367. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Verdu, C.; Matus, V.; Rabadan, J.; Guerra, V.; Perez-Jimenez, R. Correlation-based receiver for optical camera communications. OSA Opt. Express 2019, 27, 19150–19155. [Google Scholar] [CrossRef] [Green Version]
- Jurado-Verdu, C.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R.; Chavez-Burbano, P. RGB Synchronous VLC modulation scheme for OCC. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; pp. 1–6. [Google Scholar]
- Matus, V.; Teli, S.R.; Guerra, V.; Jurado-Verdu, C.; Zvanovec, S.; Perez-Jimenez, R. Evaluation of Fog Effects on Optical Camera Communications Link. In Proceedings of the 2020 3rd West Asian Symposium on Optical Wireless Communications (WASOWC), Tehran, Iran, 24–25 November 2020; pp. 1–5. [Google Scholar]
- Matus, V.; Eso, E.; Teli, S.R.; Perez-Jimenez, R.; Zvanovec, S. Experimentally Derived Feasibility of Optical Camera Communications under Turbulence and Fog Conditions. Sensors 2020, 20, 757. [Google Scholar] [CrossRef] [Green Version]
- Matus, V.; Guerra, V.; Jurado-Verdu, C.; Teli, S.; Zvanovec, S.; Rabadan, J.; Perez-Jimenez, R. Experimental Evaluation of an Analog Gain Optimization Algorithm in Optical Camera Communications. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–5. [Google Scholar]
- Matus, V.; Guerra, V.; Zvanovec, S.; Rabadan, J.; Perez-Jimenez, R. Sandstorm effect on experimental optical camera communication. OSA Appl. Opt. 2021, 60, 75–82. [Google Scholar] [CrossRef]
- Kuroda, T. Essential Principles of Image Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Teli, S.R.; Zvanovec, S.; Perez-Jimenez, R.; Ghassemlooy, Z. Spatial frequency-based angular behavior of a short-range flicker-free MIMO–OCC link. OSA Appl. Opt. 2020, 59, 10357–10368. [Google Scholar] [CrossRef]
- Teli, S.R.; Matus, V.; Zvanovec, S.; Perez-Jimenez, R.; Vitek, S.; Ghassemlooy, Z. The First Study of MIMO Scheme Within Rolling-shutter Based Optical Camera Communications. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–5. [Google Scholar]
- Le, N.-T.; Jang, Y.M. Performance evaluation of MIMO Optical Camera Communications based rolling shutter image sensor. In Proceedings of the 2016 8th International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 140–144. [Google Scholar]
- Gonçalves, A.L.R.; Maia, Á.H.A.; Santos, M.R.; de Lima, D.A.; de Miranda Neto, A. Visible Light Positioning and Communication Methods and Their Applications in the Intelligent Mobility. IEEE Lat. Am. Trans. 2021, 100, 2174–2185. [Google Scholar]
- Iturralde, D.; Azurdia-Meza, C.; Krommenacker, N.; Soto, I.; Ghassemlooy, Z.; Becerra, N. A new location system for an underground mining environment using visible light communications. In Proceedings of the 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Manchester, UK, 23–25 July 2014; pp. 1165–1169. [Google Scholar]
- Hossan, M.; Chowdhury, M.Z.; Hasan, M.; Shahjalal, M.; Nguyen, T.; Le, N.T.; Jang, Y.M. A new vehicle localization scheme based on combined optical camera communication and photogrammetry. Mob. Inf. Syst. 2018, 2018, 8501898. [Google Scholar] [CrossRef] [Green Version]
- Karbalayghareh, M.; Miramirkhani, F.; Eldeeb, H.B.; Kizilirmak, R.C.; Sait, S.M.; Uysal, M. Channel Modelling and Performance Limits of Vehicular Visible Light Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 6891–6901. [Google Scholar] [CrossRef]
- Marè, R.M.; Marte, C.L.; Cugnasca, C.E.; Sobrinho, O.G.; dos Santos, A.S. Feasibility of a Testing Methodology for Visible Light Communication Systems Applied to Intelligent Transport Systems. IEEE Lat. Am. Trans. 2020, 100, 515–523. [Google Scholar]
- Elamassie, M.; Karbalayghareh, M.; Miramirkhani, F.; Kizilirmak, R.C.; Uysal, M. Effect of Fog and Rain on the Performance of Vehicular Visible Light Communications. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC-Spring), Porto, Portugal, 3–6 June 2018; pp. 1–6. [Google Scholar]
- Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2021, 22, 712–733. [Google Scholar] [CrossRef]
- Ashok, A.; Jain, S.; Gruteser, M.; Mandayam, N.; Yuan, W.; Dana, K. Capacity of pervasive camera based communication under perspective distortions. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), Budapest, Hungary, 24–28 March 2014; pp. 112–120. [Google Scholar]
- Shi, J.; He, J.; Jiang, Z.; Zhou, Y.; Xiao, Y. Enabling user mobility for optical camera communication using mobile phone. OSA Opt. Express 2018, 26, 21762–21767. [Google Scholar] [CrossRef]
- Beshr, M.; Michie, C.; Andonovic, I. Evaluation of Visible Light Communication system performance in the presence of sunlight irradiance. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; pp. 1–4. [Google Scholar]
- Georlette, V.; Bette, S.; Brohez, S.; Pérez-Jiménez, R.; Point, N.; Moeyaert, V. Outdoor Visible Light Communication Channel Modeling under Smoke Conditions and Analogy with Fog Conditions. Optics 2020, 1, 259–281. [Google Scholar] [CrossRef]
- Eso, E.; Teli, S.; Hassan, N.B.; Vitek, S.; Ghassemlooy, Z.; Zvanovec, S. 400 m rolling-shutter-based optical camera communications link. OSA Opt. Lett. 2020, 45, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Burbano, P.; Guerra, V.; Rabadan, J.; Perez-Jimenez, R. Optical camera communication for smart cities. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Qingdao, China, 22–24 October 2017; pp. 1–4. [Google Scholar]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kedar, D.; Arnon, S. Urban optical wireless communication networks: The main challenges and possible solutions. IEEE Commun. Mag. 2004, 42, S2–S7. [Google Scholar] [CrossRef]
- Kedar, D.; Arnon, S. The positive contribution of fog to the mitigation of pointing errors in optical wireless communication. Appl. Opt. 2003, 42, 4946–4954. [Google Scholar] [CrossRef]
- Yamazato, T.; Kinoshita, M.; Arai, S.; Souke, E.; Yendo, T.; Fujii, T.; Kamakura, K.; Okada, H. Vehicle Motion and Pixel Illumination Modeling for Image Sensor Based Visible Light Communication. IEEE J. Sel. Areas Commun. 2015, 33, 1793–1805. [Google Scholar] [CrossRef]
- Guerra, V.; Ticay-Rivas, J.R.; Alonso-Eugenio, V.; Perez-Jimenez, R. Characterization and Performance of a Thermal Camera Communication System. Sensors 2021, 20, 3288. [Google Scholar] [CrossRef]
- Bohata, J.; Zvanovec, S.; Korinek, T.; Abadi, M.M.; Ghassemlooy, Z. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel. OSA Appl. Opt. 2015, 54, 7082–7087. [Google Scholar] [CrossRef]
- Libich, J.; Perez, J.; Zvanovec, S.; Ghassemlooy, Z.; Nebuloni, R.; Capsoni, C. Combined effect of turbulence and aerosol on free-space optical links. OSA Appl. Opt. 2017, 56, 336–341. [Google Scholar] [CrossRef]
- Nor, N.A.M.; Fabiyi, E.; Abadi, M.M.; Tang, X.; Ghassemlooy, Z.; Burton, A. Investigation of moderate-to-strong turbulence effects on free space optics—A laboratory demonstration. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 13–15 July 2019. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media; SPIE Press: Bellingham, WA, USA, 2005; Volume 152. [Google Scholar]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Zhu, N.; Xia, Y.; Liu, Y.; Zang, C.; Deng, H.; Ma, Z. Temperature and Humidity Monitoring System for Bulk Grain Container Based on LoRa Wireless Technology. In Lecture Notes in Computer Science, Proceedings of the Cloud Computing and Security, Haikou, China, 8–10 June 2018; Sun, X., Pan, Z., Bertino, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 102–110. [Google Scholar]
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. Overview of Cellular LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN, and NB-IoT. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 197–202. [Google Scholar]
- Atmel Corporation. ATmega328p, 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Datasheet; Atmel Corporation: San Jose, CA, USA, 2015. [Google Scholar]
- IMX219PQH5-C Datasheet. Available online: https://datasheetspdf.com/pdf/1404029/Sony/IMX219PQH5-C/1 (accessed on 7 April 2021).
- Eso, E.F.; Burton, A.; Hassan, N.B.; Abadi, M.M.; Ghassemlooy, Z.; Zvanovec, S. Experimental Investigation of the Effects of Fog on Optical Camera-based VLC for a Vehicular Environment. In Proceedings of the 2019 15th International Conference on Telecommunications (ConTEL), Graz, Austria, 13–15 July 2019. [Google Scholar]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Cartográfica de Canarias (GRAFCAN). Sistema de Información Territorial de Canarias. Available online: https://grafcan.es/v0kq90T (accessed on 12 April 2021).
Feature | Description |
---|---|
RGB LED Large Transmitter | |
Device | 12 V DC RGB LED strips (108 × 5050 SMD chips) |
Front-end device | Microcontroller Atmel ATMega328p [49] |
Single LED Small Transmitter | |
Device | 3.7 V DC White LED 5 mm |
Front-end device | Microcontroller Atmel ATMega328p [49] |
CMOS Camera Receiver | |
Camera | Picamera V2 module (Sony IMX219 [50]) |
Max resolution | px |
Gain () max. value | 16 dB |
Frame rate | 30 fps |
Experiment | Design | Processes | Metrics | Highlighted Findings |
---|---|---|---|---|
Exp. 1.1 [16] | Attenuation emulated in laboratory. 0.46 m link. | Rolling Shutter, Gain control algorithm. | Pearson’s Corr. Coef. | Automated gain optimization. |
Exp. 1.2 [14,15] | Fog and turbulence emulation in chamber, 4.68 m link. | Rolling Shutter, RGB cross-talk compensation, ROI detection. | SNR, Pearson’s Corr. Coef. | Influence of camera gain. |
Exp. 2 [17] | Sandstorm real outdoor scenario. 100 m, 200 m link. | Rolling Shutter, Large optical zoom, Tilt compensation, Gaussian Mixture Model, ROI detection. | SNR, BER. | ROI expansion due to scattering. |
Exp. 3 | Sub-pixel real outdoor scenario. 90 m, 130 m link. | GS detection with RS hardware, Small optical devices. | SNR, BER, PSF. | Re-use, PSF enhance, Scalability. |
Feature | Description |
---|---|
Dimensions | 4.9 m (length), 0.4 m (width), 0.4 m (height) |
Temperature sensors | 20 × Papouch Corp. TQS3-E (precision 0.1 C) |
LASER source | Thorlabs HLS635 (635 nm) F810APC |
Optical power meter | Thorlabs PM100D S120C |
Heat blowers | 2 × Sencor SFH7010, 2000 W |
Fog machine | Antari F-80Z, 700 W |
Channel | [nm] | [m] |
---|---|---|
Red | 630 | |
Green | 530 | |
Blue | 475 |
Metric | Position | Channel R | Channel G | Channel B |
---|---|---|---|---|
SNR (experimental) | dB | dB | dB | |
dB | dB | dB | ||
BER (theoretical) | < | < | < | |
BER (experimental) | < | < | < | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matus, V.; Guerra, V.; Jurado-Verdu, C.; Zvanovec, S.; Perez-Jimenez, R. Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation. Sensors 2021, 21, 2739. https://doi.org/10.3390/s21082739
Matus V, Guerra V, Jurado-Verdu C, Zvanovec S, Perez-Jimenez R. Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation. Sensors. 2021; 21(8):2739. https://doi.org/10.3390/s21082739
Chicago/Turabian StyleMatus, Vicente, Victor Guerra, Cristo Jurado-Verdu, Stanislav Zvanovec, and Rafael Perez-Jimenez. 2021. "Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation" Sensors 21, no. 8: 2739. https://doi.org/10.3390/s21082739
APA StyleMatus, V., Guerra, V., Jurado-Verdu, C., Zvanovec, S., & Perez-Jimenez, R. (2021). Wireless Sensor Networks Using Sub-Pixel Optical Camera Communications: Advances in Experimental Channel Evaluation. Sensors, 21(8), 2739. https://doi.org/10.3390/s21082739