Proposed New AV-Type Test-Bed for Accurate and Reliable Fish-Eye Lens Camera Self-Calibration
Abstract
:1. Introduction
1.1. Previous Studies of Fish-Eye Lens Camera Self-Calibration
1.2. Purpose of Study
2. Mathematical Model of Fish-Eye Lens Camera
2.1. Projection Model of Fish-Eye Lens Camera
2.2. Lens Distortion Model
3. Camera Calibration Design: Simulation and Real Experiments
3.1. Design of Simulation Experiments
3.2. Design of Real Experiments
4. Results of Self-Calibration
4.1. Experimental Results Using Simulation Datasets
4.1.1. Stability and Correlation Analysis in Simulation Experiments
4.1.2. Accuracy of IOPs in Simulation Experiments
4.2. Experimental Results Using Real Datasets
4.2.1. Stability and Correlation Analysis in Real Experiments
4.2.2. Accuracy of IOPs in Real Experiments
- The proposed AV-type test-bed was effective in resolving the correlation between the orientation parameters, and self-calibration was performed stably.
- At the same time, lens distortion was interpreted accurately due to the proposed test-bed having contributed to the balanced distribution of image points.
- The estimated IOPs using the AV-type test-bed showed high accuracy and precision. Even though self-calibration was performed using a dataset composed of just two images, the IOPs were estimated reliably and accurately.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campos, M.B.; Tommaselli, A.M.G.; Honkavaara, E.; Prol, F.D.S.; Kaartinen, H.; El Issaoui, A.; Hakala, T. A backpack-mounted omnidirectional camera with off-the-shelf navigation sensors for mobile terrestrial mapping: Development and forest application. Sensors 2018, 18, 827. [Google Scholar] [CrossRef] [Green Version]
- Schöps, T.; Sattler, T.; Häne, C.; Pollefeys, M. 3D modeling on the go: Interactive 3D reconstruction of large-scale scenes on mobile devices. In Proceedings of the 2015 International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 291–299. [Google Scholar]
- Ronchetti, G.; Pagliari, D.; Sona, G. DTM generation through UAV survey with a Fisheye camera on a vineyard. In Proceedings of the 2018 ISPRS TC II Mid-term Symposium, Riva del Garda, Italy, 4–7 June 2018; pp. 983–989. [Google Scholar]
- Zia, O.; Kim, J.-H.; Han, K.; Lee, J.W. 360° Panorama Generation using Drone Mounted Fisheye Cameras. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–3. [Google Scholar]
- Kim, D.; Choi, J.; Yoo, H.; Yang, U.; Sohn, K. Rear obstacle detection system with fisheye stereo camera using HCT. Expert Syst. Appl. 2015, 42, 6295–6305. [Google Scholar] [CrossRef]
- Perez-Yus, A.; Lopez-Nicolas, G.; Guerrero, J.J. A novel hybrid camera system with depth and fisheye cameras. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún Center, Cancún, Mexico, 4–8 December 2016; pp. 2789–2794. [Google Scholar]
- Sreedhar, K.K.; Aminlou, A.; Hannuksela, M.M.; Gabbouj, M. Standard-compliant multiview video coding and streaming for virtual reality applications. In Proceedings of the 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA, 11–13 December 2016; pp. 295–300. [Google Scholar]
- Sánchez, J.S.; Gerhmann, A.; Thevenon, P.; Brocard, P.; Afia, A.B.; Julien, O. Use of a FishEye camera for GNSS NLOS exclusion and characterization in urban environments. In Proceedings of the 2016 International Technical Meeting of The Institute of Navigation, Monterey, CA, USA, 25–28 January 2016. [Google Scholar]
- Xu, W.; Chatterjee, A.; Zollhöfer, M.; Rhodin, H.; Fua, P.; Seidel, H.-P.; Theobalt, C. Mo2Cap2: Real-time mobile 3D motion capture with a cap-mounted fisheye Camera. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Krams, O.; Kiryati, N. People detection in top-view fisheye imaging. In Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Lecce, Italy, 29 August–1 September 2017; pp. 1–6. [Google Scholar]
- Mei, C.; Rives, P. Single view point omnidirectional camera calibration from planar grids. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3945–3950. [Google Scholar]
- Marcato Junior, J.; Moraes, M.V.A.D.; Tommaselli, A.M.G. Experimental assessment of techniques for fisheye camera calibration. Bol. Cienc. Geod. 2015, 21, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Moreau, J.; Ambellouis, S.; Ruichek, Y. Fisheye-based method for GPS localization improvement in unknown semi-obstructed areas. Sensors 2017, 17, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marković, I.; Chaumette, F.; Petrović, I. Moving object detection, tracking and following using an omnidirectional camera on a mobile robot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5630–5635. [Google Scholar]
- Caruso, D.; Engel, J.; Cremers, D. Large-scale direct slam for omnidirectional cameras. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 141–148. [Google Scholar]
- Auysakul, J.; Xu, H.; Zhao, W. Development of hemi-cylinder plane for panorama view in around view monitor applications. In Proceedings of the 2016 International Conference on Computational Intelligence and Applications (ICCIA), Jeju, Korea, 27–29 August 2016; pp. 26–30. [Google Scholar]
- Gao, Y.; Lin, C.; Zhao, Y.; Wang, X.; Wei, S.; Huang, Q. 3-D surround view for advanced driver assistance systems. IEEE Trans. Intell. Transp. Syst. 2018, 19, 320–328. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Y.; Hu, X.; Yin, Y.; Zhou, L.; Tao, D. A flexible vehicle surround view camera system by central-around coordinate mapping model. Multimed. Tools. Appl. 2019, 78, 11983–12006. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Makino, H.; Nishimori, K.; Wakatsuki, D.; Komagata, H. Indoor positioning using a high-speed, fish-eye lens-equipped camera in visible light communication. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–8. [Google Scholar]
- Katai-Urban, G.; Eichhardt, I.; Otte, V.; Megyesi, Z.; Bixel, P. Reconstructing atmospheric cloud particles from multiple fisheye cameras. Sol. Energy 2018, 171, 171–184. [Google Scholar] [CrossRef]
- Berveglieri, A.; Tommaselli, A.; Liang, X.; Honkavaara, E. Photogrammetric measurement of tree stems from vertical fisheye images. Scand. J. For. Res. 2017, 32, 737–747. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, C.; Kim, Y. Comprehensive Analysis of system calibration between optical camera and range finder. ISPRS Int. J. Geoinf. 2018, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.C. Decentering distortion of lenses. Photogramm. Eng. 1966, 32, 444–462. [Google Scholar]
- Beyer, H.A. Accurate calibration of CCD-cameras. In Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, IL, USA, 15–18 June 1992; pp. 96–101. [Google Scholar]
- Fraser, C.S. Digital camera self-calibration. ISPRS J. Photogramm. Remote Sens. 1997, 52, 149–159. [Google Scholar] [CrossRef]
- Remondino, F.; Fraser, C. Digital camera calibration methods: Considerations and comparisons. In Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’, Dresden, Germany, 25–27 September 2006; Volume 36, pp. 266–272. [Google Scholar]
- Zhang, Z. A Flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Percoco, G.; Sánchez Salmerón, A.J. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: An experimental validation of the close-range camera calibration model for narrow angles of view. Meas. Sci. Technol. 2015, 26, 095203. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.; Denny, P.; Jones, E.; Glavin, M. Accuracy of fish-eye lens models. Appl. Opt. 2010, 17, 3338–3347. [Google Scholar] [CrossRef] [Green Version]
- Kannala, J.; Brandt, S.S. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1335–1340. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, K. Fish eye lens. J. Opt. Soc. Am. 1964, 54, 1060–1061. [Google Scholar] [CrossRef]
- Ray, S.F. Applied Photographic Optics: Imaging Systems for Photography, Film, and Video; Focal Press: Oxford, UK, 2002. [Google Scholar]
- Abraham, S.; Förstner, W. Fish-eye-stereo calibration and epipolar rectification. ISPRS J. Photogramm. Remote Sens. 2005, 59, 278–288. [Google Scholar] [CrossRef]
- Hughes, C.; McFeely, R.; Denny, P.; Glavin, M.; Jones, E. Equidistant (fθ) fish-eye perspective with application in distortion centre estimation. Image Vis. Comput. 2010, 28, 538–551. [Google Scholar] [CrossRef]
- Hughes, C.; Denny, P.; Glavin, M.; Jones, E. Equidistant fish-eye calibration and rectification by vanishing point extraction. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2289–2296. [Google Scholar] [CrossRef]
- Sahin, C. Comparison and calibration of mobile phone fisheye lens and regular fisheye lens via equidistant model. J. Sens. 2016, 2016, 9379203. [Google Scholar] [CrossRef] [Green Version]
- Bakstein, H.; Pajdla, T. Panoramic mosaicing with a 180/spl deg/field of view lens. In Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV’02, Copenhagen, Denmark, 2 June 2002; pp. 60–67. [Google Scholar]
- Schneider, D.; Schwalbe, E.; Maas, H.-G. Validation of geometric models for fisheye lenses. ISPRS J. Photogramm. Remote Sens. 2009, 64, 259–266. [Google Scholar] [CrossRef]
- Li, S. Full-view spherical image camera. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 386–390. [Google Scholar]
- Li, C.; Wang, L.; Lu, X.; Chen, J.; Fan, S. Researches on hazard avoidance cameras calibration of lunar rover. In Proceedings of the International Conference on Space Optics—ICSO 2010, Rhodes Island, Greece, 4–8 October 2010; p. 105652T. [Google Scholar]
- Schneider, D.; Schwalbe, E. Integrated processing of terrestrial laser scanner data and fisheye-camera image data. In Proceedings of the the 21st ISPRS Congress, Beijing, China, 3–11 July 2008; pp. 1037–1044. [Google Scholar]
- Perfetti, L.; Polari, C.; Fassi, F. Fisheye photogrammetry: Tests and methodologies for the survey of narrow spaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W3, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Licardie, S. Alternative models for fish-eye lenses. Pattern Recognit. Lett. 1995, 16, 433–441. [Google Scholar] [CrossRef]
- Devernay, F.; Faugeras, O. Straight lines have to be straight. Mach. Vis. Appl. 2001, 13, 14–24. [Google Scholar] [CrossRef]
- Fitzgibbon, A.W. Simultaneous linear estimation of multiple view geometry and lens distortion. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; pp. 125–132. [Google Scholar]
- Davide Scaramuzza, A.M.; Roland, S. A flexible technique for accurate omnidirectional camera calibration and structure from motion. In Proceedings of the Fourth IEEE International Conference on Computer Vision Systems (ICVS), New York, NY, USA, 5–7 January 2006; pp. 45–53. [Google Scholar]
- Bellas, N.; Chai, S.M.; Dwyer, M.; Linzmeier, D. Real-time fisheye lens distortion correction using automatically generated streaming accelerators. In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines, Napa, CA, USA, 5–7 April 2009; pp. 149–156. [Google Scholar]
- Hsu, C.-Y.; Chang, C.-M.; Kang, L.-W.K.; Fu, R.-H.; Chen, D.-Y.; Weng, M.-F. Fish-eye lenses-based camera calibration and panoramic image stitching. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Ilan, Taiwan, 19–21 May 2018; pp. 1–2. [Google Scholar]
- Schiller, I.; Beder, C.; Koch, R. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 21, 297–302. [Google Scholar]
- Choi, K.H.; Kim, Y.; Kim, C. Analysis of fish-eye lens camera self-calibration. Sensors 2019, 19, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwalbe, E. Geometric modelling and calibration of fisheye lens camera systems. In Proceedings of the ISPRS Working Group, Panoramic Photogrammetry Workshop, Berlin, Germany, 24–25 February 2005. [Google Scholar]
DistortionParameters | |||||||||
K1 | K2 | K3 | P1 | P2 | A1 | A2 | |||
2.9 mm (840.58 pixel) | 0.004 mm (1.16 pixel) | 0.002 mm (0.58 pixel) | 1−5 | 1−7 | 3−9 | −1−5 | −2−7 | 1−5 | 2−7 |
Pixel Size | Image Dimension | Image Measurement Random Noise (1σ) | |||||||
x | y | ||||||||
0.00345 mm | 2448 pixel | 2048 pixel | 0.5 pixel |
Dataset | Location Number (Number of Images) | Usage |
---|---|---|
a | 3, 4 (two images) | Evaluation of the AV-type test-bed |
b | 1, 2, 3, 4 (four images) | |
c | 3, 4, 5, 8 (four images) | |
d | 3, 4, 6, 7 (four images) | |
e | All (eight images) |
Camera Number | Fish-Eye Lens | Camera Body | ||
---|---|---|---|---|
Fish-eye lens Camera 1 | Samyang Fisheye Lens | Sony α6000 | ||
Projection model | Focal length | Pixel size | Image size (pixel) | |
Equidistant | 7.5 mm (1918.16 pixel) | 0.00391 mm | 6000 × 4000 | |
Fish-eye lens Camera 2 | Sunex DSL315 | Chameleon3 USB3 5.0 MP | ||
Projection model | Focal length | Pixel size | Image size (pixel) | |
Equisolid-angle | 2.67 mm (773.91 pixel) | 0.00345 mm | 2448 × 2048 |
Dataset | Location Number (Number of Images) | Usage | Configuration of Image Acquisition |
---|---|---|---|
A | 3, 4 (two images) | Evaluation for the AV-type test-bed | |
B | 1, 2, 3, 4 (four images) | ||
C | 3, 4, 5, 8 (four images) | ||
D | 3, 4, 6, 7 (four images) | ||
E | All images (eight images) |
Projection model | Stability | Dataset | Correlations | ||||
---|---|---|---|---|---|---|---|
Equidistant | Stable | a | 0.91 | 0.18 | 0.21 | 0.40 | 0.50 |
b | 0.83 | 0.18 | 0.15 | 0.45 | 0.61 | ||
c | 0.49 | 0.09 | 0.17 | 0.34 | 0.49 | ||
d | 0.80 | 0.20 | 0.28 | 0.40 | 0.57 | ||
e | 0.53 | 0.13 | 0.15 | 0.44 | 0.64 | ||
mean | 0.71 | 0.15 | 0.19 | 0.41 | 0.56 | ||
Equisolid-angle | Stable | a | 0.93 | 0.19 | 0.16 | 0.47 | 0.52 |
b | 0.83 | 0.17 | 0.12 | 0.50 | 0.63 | ||
c | 0.49 | 0.07 | 0.14 | 0.40 | 0.49 | ||
d | 0.79 | 0.19 | 0.23 | 0.49 | 0.60 | ||
e | 0.52 | 0.11 | 0.14 | 0.50 | 0.65 | ||
mean | 0.71 | 0.15 | 0.16 | 0.47 | 0.58 | ||
Orthogonal | Stable | a | 0.90 | 0.16 | 0.10 | 0.56 | 0.64 |
b | 0.81 | 0.15 | 0.11 | 0.60 | 0.68 | ||
c | 0.64 | 0.08 | 0.12 | 0.45 | 0.54 | ||
d | 0.68 | 0.18 | 0.14 | 0.62 | 0.68 | ||
e | 0.58 | 0.12 | 0.14 | 0.59 | 0.70 | ||
mean | 0.72 | 0.14 | 0.12 | 0.57 | 0.65 | ||
Stereographic | Stable | a | 0.90 | 0.14 | 0.20 | 0.33 | 0.47 |
b | 0.82 | 0.17 | 0.16 | 0.37 | 0.54 | ||
c | 0.53 | 0.09 | 0.15 | 0.27 | 0.45 | ||
d | 0.80 | 0.20 | 0.29 | 0.31 | 0.50 | ||
e | 0.55 | 0.14 | 0.16 | 0.37 | 0.58 | ||
mean | 0.72 | 0.15 | 0.19 | 0.33 | 0.51 |
Projection Model | Dataset | |||||
---|---|---|---|---|---|---|
a | b | c | d | e | Mean | |
Equidistant | 0.21 | 0.16 | 0.14 | 0.15 | 0.05 | 0.14 |
Equisolid-angle | 0.14 | 0.16 | 0.11 | 0.14 | 0.15 | 0.14 |
Orthogonal | 0.16 | 0.12 | 0.11 | 0.20 | 0.12 | 0.14 |
Stereographic | 0.23 | 0.34 | 0.26 | 0.09 | 0.23 | 0.23 |
Projection Model | Dataset | |||||
---|---|---|---|---|---|---|
a | b | c | d | e | Mean | |
Equidistant | 0.56 | 0.10 | 0.15 | 0.29 | 0.13 | 0.25 |
Equisolid-angle | 0.29 | 0.03 | 0.03 | 0.25 | 0.09 | 0.14 |
Orthogonal | 0.32 | 0.31 | 0.37 | 0.24 | 0.13 | 0.27 |
Stereographic | 0.09 | 0.07 | 0.23 | 0.14 | 0.00 | 0.11 |
Projection Model | Dataset | |||||
---|---|---|---|---|---|---|
a | b | c | d | e | Mean | |
Equidistant | 0.68 | 0.29 | 0.27 | 0.31 | 0.20 | 0.35 |
Equisolid-angle | 0.37 | 0.12 | 0.13 | 0.21 | 0.07 | 0.18 |
Orthogonal | 0.18 | 0.25 | 0.29 | 0.26 | 0.08 | 0.21 |
Stereographic | 0.41 | 0.19 | 0.22 | 0.26 | 0.10 | 0.24 |
Projection Model | Dataset | |||||
---|---|---|---|---|---|---|
a | b | c | d | e | Mean | |
Equidistant | 0.46 | 0.30 | 0.25 | 0.25 | 0.17 | 0.29 |
Equisolid-angle | 0.20 | 0.20 | 0.19 | 0.14 | 0.16 | 0.18 |
Orthogonal | 0.22 | 0.10 | 0.14 | 0.18 | 0.14 | 0.16 |
Stereographic | 0.43 | 0.48 | 0.33 | 0.32 | 0.33 | 0.38 |
Camera | Stability | Dataset | Correlations | ||||
---|---|---|---|---|---|---|---|
Fish-eye Lens Camera 1 (Equidistant) | Stable | A | 0.95 | 0.11 | 0.30 | 0.31 | 0.36 |
B | 0.77 | 0.19 | 0.32 | 0.42 | 0.22 | ||
C | 0.88 | 0.22 | 0.40 | 0.19 | 0.22 | ||
D | 0.93 | 0.15 | 0.37 | 0.29 | 0.36 | ||
E | 0.59 | 0.58 | 0.49 | 0.33 | 0.38 | ||
mean | 0.82 | 0.25 | 0.38 | 0.31 | 0.31 | ||
Fish-eye Lens Camera 2 (Equisolid-angle) | Stable | A | 0.93 | 0.07 | 0.08 | 0.45 | 0.52 |
B | 0.90 | 0.05 | 0.06 | 0.54 | 0.67 | ||
C | 0.70 | 0.14 | 0.22 | 0.38 | 0.39 | ||
D | 0.80 | 0.05 | 0.20 | 0.49 | 0.56 | ||
E | 0.56 | 0.50 | 0.47 | 0.50 | 0.55 | ||
mean | 0.78 | 0.16 | 0.21 | 0.47 | 0.54 |
Camera | Dataset | Estimated Value (Pixel) | Standard Deviation (Pixel) | ||||
---|---|---|---|---|---|---|---|
Fish-eye Lens Camera 1 (equidistant) | A | −4.82 | 27.39 | 1910.53 | 0.32 | 0.17 | 0.48 |
B | −4.10 | 27.70 | 1910.90 | 0.38 | 0.23 | 0.39 | |
C | −3.91 | 26.96 | 1910.79 | 0.33 | 0.21 | 0.35 | |
D | −4.45 | 27.33 | 1910.65 | 0.28 | 0.16 | 0.42 | |
E | −4.15 | 27.32 | 1910.58 | 0.27 | 0.20 | 0.42 | |
Fish-eye Lens Camera 2 (equisolid-angle) | A | −10.06 | −32.21 | 777.56 | 0.07 | 0.07 | 0.22 |
B | −10.07 | −32.18 | 777.78 | 0.06 | 0.06 | 0.16 | |
C | −10.17 | −32.24 | 777.87 | 0.07 | 0.07 | 0.15 | |
D | −10.04 | −31.96 | 777.66 | 0.06 | 0.07 | 0.13 | |
E | −10.09 | −32.15 | 777.95 | 0.09 | 0.10 | 0.23 |
Dataset | K1 | K2 | K3 | P1 | P2 | A1 | A2 | |
---|---|---|---|---|---|---|---|---|
Estimated Value | A | |||||||
B | ||||||||
C | ||||||||
D | ||||||||
E | ||||||||
Standard deviation | A | |||||||
B | ||||||||
C | ||||||||
D | ||||||||
E |
Dataset | K1 | K2 | K3 | P1 | P2 | A1 | A2 | |
---|---|---|---|---|---|---|---|---|
Estimated Value | A | − | − | |||||
B | − | − | ||||||
C | − | − | ||||||
D | − | − | ||||||
E | − | |||||||
Standard deviation | A | |||||||
B | ||||||||
C | ||||||||
D | ||||||||
E |
Camera | Dataset | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | Mean | |
Fish-eye Lens Camera 1 (Equisolid-angle) | 0.27 | 0.20 | 0.23 | 0.28 | 0.37 | 0.27 |
Fish-eye Lens Camera 2 (Equidistant) | 0.34 | 0.31 | 0.39 | 0.36 | 0.35 | 0.35 |
Projection Model | Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AV-Type Test-Bed | V-Type Test-Bed (Choi et al. [50]) | |||||||||
a (2) | b (4) | c (4) | d (4) | e (8) | Mean | 1 (10) | 2 (10) | 3 (14) | Mean | |
Equidistant | 0.21 | 0.16 | 0.14 | 0.15 | 0.05 | 0.14 | 0.40 | 0.78 | 0.71 | 0.63 |
Equisolid-angle | 0.14 | 0.16 | 0.11 | 0.14 | 0.15 | 0.14 | 0.56 | 0.32 | 0.46 | 0.45 |
Orthogonal | 0.16 | 0.12 | 0.11 | 0.20 | 0.12 | 0.14 | 0.26 | 0.41 | 0.11 | 0.26 |
Stereographic | 0.23 | 0.34 | 0.26 | 0.09 | 0.23 | 0.23 | 0.41 | 0.37 | 0.18 | 0.32 |
Projection Model | Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AV-Type Test-Bed | V-Type Test-Bed (Choi et al. [50]) | |||||||||
a (2) | b (4) | c (4) | d (4) | e (8) | Mean | 1 (10) | 2 (10) | 3 (14) | Mean | |
Equidistant | 0.56 | 0.10 | 0.15 | 0.29 | 0.13 | 0.25 | 1.97 | 0.04 | 0.04 | 0.68 |
Equisolid-angle | 0.29 | 0.03 | 0.03 | 0.25 | 0.09 | 0.14 | 1.25 | 0.22 | 0.46 | 0.64 |
Orthogonal | 0.32 | 0.31 | 0.37 | 0.24 | 0.13 | 0.27 | 1.91 | 0.58 | 0.16 | 0.88 |
Stereographic | 0.09 | 0.07 | 0.23 | 0.14 | 0.00 | 0.11 | 0.61 | 0.96 | 0.70 | 0.76 |
Projection Model | Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AV-Type Test-Bed | V-Type Test-Bed (Choi et al. [50]) | |||||||||
a (2) | b (4) | c (4) | d (4) | e (8) | Mean | 1 (10) | 2 (10) | 3 (14) | Mean | |
Equidistant | 0.68 | 0.29 | 0.27 | 0.31 | 0.20 | 0.35 | 7.48 | 0.18 | 0.15 | 2.60 |
Equisolid-angle | 0.37 | 0.12 | 0.13 | 0.21 | 0.07 | 0.18 | 2.47 | 0.34 | 0.39 | 1.07 |
Orthogonal | 0.18 | 0.25 | 0.29 | 0.26 | 0.08 | 0.21 | 1.21 | 0.32 | 0.08 | 0.54 |
Stereographic | 0.41 | 0.19 | 0.22 | 0.26 | 0.10 | 0.24 | 3.12 | 1.50 | 0.75 | 1.79 |
Projection Model | Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AV-Type Test-Bed | V-Type Test-Bed (Choi et al. [50]) | |||||||||
a (2) | b (4) | c (4) | d (4) | e (8) | Mean | 1 (10) | 2 (10) | 3 (14) | Mean | |
Equidistant | 0.46 | 0.30 | 0.25 | 0.25 | 0.17 | 0.29 | 6.12 | 0.85 | 0.70 | 2.56 |
Equisolid-angle | 0.20 | 0.20 | 0.19 | 0.14 | 0.16 | 0.18 | 1.63 | 0.28 | 0.39 | 0.77 |
Orthogonal | 0.22 | 0.10 | 0.14 | 0.18 | 0.14 | 0.16 | 0.38 | 0.35 | 0.11 | 0.28 |
Stereographic | 0.43 | 0.48 | 0.33 | 0.32 | 0.33 | 0.38 | 2.45 | 0.78 | 0.61 | 1.28 |
Approaches | Projection Model | Number of Used Images | Standard Deviation (Pixel) | RMS-Residuals of IOPs (Pixel) | ||
---|---|---|---|---|---|---|
Proposed | Equidistant | 2–8 | 0.27–0.38 | 0.16–0.23 | 0.35–0.48 | 0.20–0.37 |
Equisolid-angle | 2–8 | 0.06–0.09 | 0.06–0.10 | 0.13–0.23 | 0.31–0.39 | |
Marcato et al. [12] | Stereographic | 43 | 0.20 | 0.20 | 0.19 | 0.51 |
Sahin [36] (used 2 cameras) | Equidistant | 13 | 0.96/2.84 | 0.89/2.85 | 0.75/1.15 | 0.60/0.71 |
Schneider et al. [38] | Equisolid-angle | 9 | 0.78 | 3.14 | 0.95 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.H.; Kim, C. Proposed New AV-Type Test-Bed for Accurate and Reliable Fish-Eye Lens Camera Self-Calibration. Sensors 2021, 21, 2776. https://doi.org/10.3390/s21082776
Choi KH, Kim C. Proposed New AV-Type Test-Bed for Accurate and Reliable Fish-Eye Lens Camera Self-Calibration. Sensors. 2021; 21(8):2776. https://doi.org/10.3390/s21082776
Chicago/Turabian StyleChoi, Kang Hyeok, and Changjae Kim. 2021. "Proposed New AV-Type Test-Bed for Accurate and Reliable Fish-Eye Lens Camera Self-Calibration" Sensors 21, no. 8: 2776. https://doi.org/10.3390/s21082776
APA StyleChoi, K. H., & Kim, C. (2021). Proposed New AV-Type Test-Bed for Accurate and Reliable Fish-Eye Lens Camera Self-Calibration. Sensors, 21(8), 2776. https://doi.org/10.3390/s21082776