A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors
Abstract
:1. Introduction
- (1)
- (2)
- We conducted comprehensive experiments on two public datasets: OU-ISIR dataset, which is the largest public gait dataset containing the maximum number (744) of participants, and whuGait dataset, the gait data which were collected in real-world unconstrained scenarios. The impact of different data segmentation methods and attention mechanisms on gait recognition performance were studied and analyzed.
2. Related Works
3. Methods and Materials
3.1. Datasets
3.2. Methods
3.2.1. Lightweight CNN
3.2.2. Attention Module
4. Experimental Results
4.1. Experimental Methods and Evaluation Metrics
4.2. Experimental Results
4.2.1. Performance Comparison of Model with and without Attention Mechanism
4.2.2. Performance Comparison of Different Attention Mechanisms
4.2.3. Performance Comparison with Existing Research Results
4.2.4. Discriminative Features Comparison of Different Methods
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Peinado-Contreras, A.; Munoz-Organero, M. Gait-Based Identification Using Deep Recurrent Neural Networks and Acceleration Patterns. Sensors 2020, 20, 6900. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Tan, T. Automated biometrics-based personal identification. Proc. Natl. Acad. Sci. USA 1999, 96, 11065–11066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, R.; Wu, X.; Sun, Z.; Tan, T. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1761–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Yang, W.; Valli, C.; Qiao, L.; Shankaran, R.; Orgun, M.A.; Mukhopadhyay, S.C. Finger-to-heart (F2H): Authentication for wireless implantable medical devices. IEEE J. Biomed. Health Inform. 2018, 23, 1546–1557. [Google Scholar] [CrossRef]
- Wang, K.; Kumar, A. Toward more accurate iris recognition using dilated residual features. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3233–3245. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Li, K.; Tan, H.; Wang, G. Gait learning based authentication for intelligent things. IEEE Trans. Veh. Technol. 2020, 69, 4450–4459. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J. Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas. IEEE Trans. Veh. Technol. 2018, 67, 12049–12060. [Google Scholar] [CrossRef]
- Derawi, M.O.; Nickel, C.; Bours, P.; Busch, C. Unobtrusive User-Authentication on Mobile Phones Using Biometric Gait Recognition. In Proceedings of the Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Darmstadt, Germany, 15–17 October 2010. [Google Scholar]
- Stevenage, S.V.; Nixon, M.S.; Vince, K. Visual Analysis of Gait as a Cue to Identity. Appl. Cogn. Psychol. 1999, 13, 513–526. [Google Scholar] [CrossRef]
- Zang, W.; Zhang, S.; Li, Y. An accelerometer-assisted transmission power control solution for energy-efficient communications in WBAN. IEEE J. Sel. Areas Commun. 2016, 34, 3427–3437. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, J.; Dana, K. Deep TEN: Texture Encoding Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Gadaleta, M.; Rossi, M. Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognit. 2018, 74, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Huang, G.; Xiong, H.; Choo, K.-K.R. A fuzzy authentication system based on neural network learning and extreme value statistics. IEEE Trans. Fuzzy Syst. 2019, 29, 549–559. [Google Scholar] [CrossRef]
- Deb, S.; Yang, Y.O.; Chua, M.C.H.; Tian, J. Gait identification using a new time-warped similarity metric based on smartphone inertial signals. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4041–4053. [Google Scholar] [CrossRef]
- Müller, M. Dynamic time warping. Inf. Retr. Music Motion 2007, 69–84. [Google Scholar] [CrossRef]
- Adler, J.; Parmryd, I. Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom. Part A 2010, 77, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.L.; Do, K.P.; Rethlefsen, S.A.; Healy, B. Cross-correlation as a method for comparing dynamic electromyography signals during gait. J. Biomech. 2006, 39, 2714–2718. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yuao, T. Curve aligning approach for gait authentication based on a wearable accelerometer. Physiol. Meas. 2012, 33, 1111. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Mao, C.; Fan, X.; Li, Y. Accelerometer-based speed-adaptive gait authentication method for wearable IoT devices. IEEE Internet Things J. 2018, 6, 820–830. [Google Scholar] [CrossRef]
- Sun, F.; Zang, W.; Gravina, R.; Fortino, G.; Li, Y. Gait-based identification for elderly users in wearable healthcare systems. Inf. Fusion 2020, 53, 134–144. [Google Scholar] [CrossRef]
- Nickel, C.; Busch, C.; Rangarajan, S.; Mobius, M. Using hidden markov models for accelerometer-based biometric gait recognition. In Proceedings of the 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications (CSPA), Penang, Malaysia, 4–6 March 2011. [Google Scholar]
- Zhang, Y.; Pan, G.; Jia, K.; Lu, M.; Wang, Y.; Wu, Z. Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans. Cybern. 2014, 45, 1864–1875. [Google Scholar] [CrossRef]
- Gafurov, D.; Snekkenes, E.; Bours, P. Gait authentication and identifification using wearable accelerometer sensor. In Proceedings of the 2007 IEEE Workshop on Automatic Identifification Advanced Technologies, Alghero, Italy, 7–8 June 2007; pp. 220–225. [Google Scholar]
- Xu, C.; He, J.; Zhang, X.; Wang, C.; Duan, S. Template-matching-based detection of freezing of gait using wearable sensors. Procedia Comput. Sci. 2018, 129, 21–27. [Google Scholar] [CrossRef]
- Bobic, V.N.; Djuric-Jovieic, M.D.; Radovanovic, S.M.; Dragaevic, N.T.; Kostic, V.S.; Popovic, M.B. Challenges of stride segmentation and their implementation for impaired gait. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018. [Google Scholar]
- Tran, L.; Hoang, T.; Nguyen, T.; Kim, H.; Choi, D. Multi-Model Long Short-Term Memory Network for Gait Recognition Using Window-Based Data Segment. IEEE Access 2021, 9, 23826–23839. [Google Scholar] [CrossRef]
- Juefei-Xu, F.; Bhagavatula, C.; Jaech, A.; Prasad, U.; Savvides, M. Gait-id on the move: Pace independent human identification using cell phone accelerometer dynamics. In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Washington, DC, USA, 23–27 September 2012. [Google Scholar]
- Rastegari, E.; Azizian, S.; Ali, H. Machine learning and similarity network approaches to support automatic classification of parkinson’s diseases using accelerometer-based gait analysis. In Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS), Honolulu, HI, USA, 8–11 January 2019. [Google Scholar]
- Ortiz, N.; Hernandez, R.D.; Jimenez, R.; Mauledeoux, M.; Aviles, O. Survey of biometric pattern recognition via machine learning techniques. Contemp. Eng. Sci. 2018, 11, 1677–1694. [Google Scholar] [CrossRef] [Green Version]
- Damaševičius, R.; Vasiljevas, M.; Šalkevičius, J.; Woźniak, M. Human activity recognition in AAL environments using random projections. Comput. Math. Methods Med. 2016. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y. Influence of holding smart phone for acceleration-based gait authentication. In Proceedings of the 2014 Fifth International Conference on Emerging Security Technologies (EST), Alcala de Henares, Spain, 10–12 September 2014. [Google Scholar]
- Chan, H.; Zheng, H.; Wang, H.; Sterritt, R.; Newell, D. Smart mobile phone based gait assessment of patients with low back pain. In Proceedings of the 2013 Ninth International Conference on Natural Computation (ICNC), San Diego, CA, USA, 23–25 July 2013. [Google Scholar]
- Li, G.; Huang, L.; Xu, H. iwalk: Let your smartphone remember you. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017. [Google Scholar]
- Nickel, C.; Wirtl, T.; Busch, C. Authentication of smartphone users based on the way they walk using k-nn algorithm. In Proceedings of the 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Washington, DC, USA, 18–20 July 2012. [Google Scholar]
- Choi, S.; Youn, I.H.; LeMay, R.; Burus, S.; Youn, J.-H. Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. In Proceedings of the 2014 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 3–6 February 2014. [Google Scholar]
- Pratama, F.I.; Budianita, A. Optimization of K-Nn Classification in Human Gait Recognition. In Proceedings of the 2020 Fifth International Conference on Informatics and Computing (ICIC), Bari, Italy, 2–5 October 2020. [Google Scholar]
- Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional neural networks for human activity recognition using mobile sensor. In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services (MobiCASE), Austin, TX, USA, 6–7 November 2014. [Google Scholar]
- Zhang, L.; Wu, X.; Luo, D. Recognizing human activities from raw accelerometer data using deep neural networks. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015. [Google Scholar]
- Nguyen, K.-T.; Vo-Tran, T.-L.; Dinh, D.-T.; Tran, M.-T. Gait Recognition with Multi-region Size Convolutional Neural Network for Authentication with Wearable Sensors. In Proceedings of the International Conference on Future Data and Security Engineering (FDSE), Ho Chi Minh City, Vietnam, 29 November–1 December 2017. [Google Scholar]
- Hannink, J.; Kautz, T.; Pasluosta, C.F.; Gasmann, K.-G.; Klucken, J.; Eskofier, B.M. Sensor-based gait parameter extraction with deep convolutional neural network. IEEE J. Biomed. Health Inform. 2016, 21, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Zou, Q.; Wang, Y.; Wang, Q.; Zhao, Y.; Li, Q. Deep Learning-Based Gait Recognition Using Smartphones in the Wild. IEEE Trans. Inf. Forensics Secur. 2020, 15, 3197–3212. [Google Scholar]
- Aghdam, H.H.; Heravi, E.J. Guide to Convolutional Neural Networks; Springer: New York, NY, USA, 2017; Volume 10. [Google Scholar]
- Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B. Large scale multiple kernel learning. J. Mach. Learn. Res. 2006, 7, 1531–1565. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. The Largest Inertial Sensor-Based Gait Database and Performance Evaluation of Gait-Based Personal Authentication. Pattern Recognit. 2014, 47, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; van der Matten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Albahli, S.; Nida, N.; Irtaza, A.; Yousaf, M.H.; Mahmood, M.T. Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour. IEEE Access 2020, 8, 198403–198414. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Laurens, V.D.M.; Hinton, G. Visualizing Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Dataset Name | Number of Subjects | Data Segmentation Method | Overlap of Samples | Samples for Training | Samples for Test |
---|---|---|---|---|---|
Dataset #1 | 118 | Gait cycle based segmentation (two gait cycles as a sample) | 50% | 33,104 | 3740 |
Dataset #2 | 20 | Gait cycle based segmentation (two gait cycles as a sample) | 0 | 44,339 | 4936 |
Dataset #3 | 118 | Fixed length based segmentation (sample length = 128) | 50% | 26,283 | 2991 |
Dataset #4 | 20 | Fixed length based segmentation (sample length = 128) | 0 | 35,373 | 3941 |
OU-ISR | 744 | Fixed length based segmentation (sample length = 128) | 61% | 13,212 | 1409 |
Layer Name | Kernel Size | Kernel Num. | Feature Map |
---|---|---|---|
Conv1 | 1 × 9 | 32 | 6 × 64 × 32 |
Pool1 | 1 × 2 | / | 6 × 32 × 32 |
BN | / | / | 6 × 32 × 32 |
ReLU | / | / | 6 × 32 × 32 |
Conv2 | 1 × 3 | 64 | 6 × 32 × 64 |
Conv3 | 1 × 3 | 128 | 6 × 32 × 128 |
Pool2 | 1 × 2 | / | 6 × 16 × 128 |
BN | / | / | 6 × 16 × 128 |
ReLU | / | / | 6 × 16 × 128 |
Conv4 | 6 × 1 | 128 | 1 × 16 × 128 |
BN | / | / | 1 × 16 × 128 |
ReLU | / | / | 1 × 16 × 128 |
Dataset Name | Classification Methods | Accuracy | Recall | F1-Score | Parameters Num. |
---|---|---|---|---|---|
Dataset #1 | CNN | 93.96% | 93.95% | 93.21% | 372,598 |
CNN+CEDS (Ours) | 94.71% | 94.67% | 93.98% | 344,055 | |
Dataset #2 | CNN | 97.21% | 94.96% | 94.89% | 171,796 |
CNN+CEDS (Ours) | 97.67% | 95.51% | 95.37% | 168,341 | |
Dataset #3 | CNN | 92.88% | 92.02% | 90.90% | 372,598 |
CNN+CEDS (Ours) | 95.09% | 95.26% | 94.45% | 343,543 | |
Dataset #4 | CNN | 97.97% | 96.50% | 96.87% | 171,796 |
CNN+CEDS (Ours) | 98.58% | 97.38% | 97.81% | 168,341 | |
OU-ISIR | CNN | 59.62% | 58.69% | 53.40% | 1,657,321 |
CNN+CEDS (Ours) | 97.16% | 96.96% | 96.20% | 1,468,266 |
Dataset Name | Methods | Accuracy | Recall | F1-Score |
---|---|---|---|---|
Dataset #1 | CNN+SE | 94.20% | 93.99% | 93.13% |
CNN+CEDS (Ours) | 94.71% | 94.67% | 93.98% | |
Dataset #2 | CNN+SE | 97.24% | 94.93% | 94.76% |
CNN+CEDS (Ours) | 97.67% | 95.51% | 95.37% | |
Dataset #3 | CNN+SE | 93.38% | 93.16% | 92.10% |
CNN+CEDS (Ours) | 95.09% | 95.26% | 94.45% | |
Dataset #4 | CNN+SE | 98.05% | 96.33% | 96.78% |
CNN+CEDS (Ours) | 98.58% | 97.38% | 97.81% | |
OU-ISIR | CNN+SE | 60.04% | 58.65% | 54.20% |
CNN+CEDS (Ours) | 97.16% | 96.96% | 96.20% |
Dataset Name | Classification Methods | Accuracy | AUC | Parameters Num. | Memory Size Needed |
---|---|---|---|---|---|
Dataset #1 | CNN+LSTM [42] | 93.52% | - | 4,716,406 | 56.7 Mb |
LSTM & CNN [27] | 94.15% | - | - | - | |
CNN+CEDS (Ours) | 94.71% | 94.81% | 344,055 | 4.24 Mb | |
Dataset #2 | CNN+LSTM [42] | 97.33% | - | 4,415,252 | 53.1 Mb |
CNN+CEDS (Ours) | 97.67% | 97.96% | 168,341 | 2.13 Mb | |
OU-ISIR | LSTM [42] | 72.32% | - | 4,986,601 | 59.9 Mb |
LSTM & CNN [27] | 89.79% | - | - | - | |
CNN+CEDS (Ours) | 97.16% | 97.32% | 1,468,266 | 17.7 Mb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhou, P.; Li, Y.; Sun, F. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors. Sensors 2021, 21, 2866. https://doi.org/10.3390/s21082866
Huang H, Zhou P, Li Y, Sun F. A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors. Sensors. 2021; 21(8):2866. https://doi.org/10.3390/s21082866
Chicago/Turabian StyleHuang, Haohua, Pan Zhou, Ye Li, and Fangmin Sun. 2021. "A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors" Sensors 21, no. 8: 2866. https://doi.org/10.3390/s21082866
APA StyleHuang, H., Zhou, P., Li, Y., & Sun, F. (2021). A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors. Sensors, 21(8), 2866. https://doi.org/10.3390/s21082866