Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Material Model
2.2. Complex Elasticity Modulus
2.3. Measurement Principles
2.3.1. Static Measurement
2.3.2. Pipette Aspiration Technique
2.4. Samples
2.4.1. Silicone Samples
2.4.2. Vocal Fold Tissue Samples
2.5. Measurement Setup
2.5.1. Static Elasticity Measurement
2.5.2. Dynamic Pipette Aspiration Technique
2.6. Measurement Procedure and Data Evaluation
3. Results
3.1. Silicone
Effect of the Contact Pressure on Pipette Measurement
3.2. Reproducibility
3.3. Measurement Precision
Phase Shift and Complex Elasticity
3.4. Vocal Fold Tissue
3.4.1. Comparison of Frequency-Dependent Elasticity Trends between Different Larynges
3.4.2. Comparison between VF Pairs
3.4.3. Aging of Tissue
3.4.4. Phase Shift
3.4.5. Complex Elasticity
4. Discussion
4.1. Measurement Technique
4.2. Material
4.3. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PipAsT | Pipette Aspiration Technique |
NaCl | Sodium Chloride |
STD-dev | Standard Deviation |
RSD | Relative Standard Deviation |
VF | Vocal Fold |
DFG | German Research Foundation |
FWF | Austrian Science Fund |
References
- Ramig, L.O.; Verdolini, K. Treatment Efficacy. J. Speech Lang. Hear. Res. 1998, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miri, A.K. Mechanical Characterization of Vocal Fold Tissue: A Review Study. J. Voice 2014, 28, 657–667. [Google Scholar] [CrossRef]
- Naunheim, M.R.; Carroll, T.L. Benign vocal fold lesions. Curr. Opin. Otolaryngol. Head Neck Surg. 2017, 25, 453–458. [Google Scholar] [CrossRef]
- Kutty, J.K.; Webb, K. Tissue Engineering Therapies for the Vocal Fold Lamina Propria. Tissue Eng. 2009, 15, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Goodyer, E.; Muller, F.; Bramer, B.; Chauhan, D.; Hess, M. In vivo measurement of the elastic properties of the human vocal fold. Eur. Arch. Oto-Rhino 2006, 263, 455–462. [Google Scholar] [CrossRef]
- Alipour, F.; Jaiswal, S.; Vigmostad, S. Vocal fold elasticity in the pig, sheep, and cow larynges. J. Voice Off. J. Voice Found. 2011, 25, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Hess, M.M.; Mueller, F.; Kobler, J.B.; Zeitels, S.M.; Goodyer, E. Measurements of vocal fold elasticity using the linear skin rheometer. Folia Phoniatr. Logop. Off. Organ Int. Assoc. Logop. Phoniatr. (IALP) 2006, 58, 207–216. [Google Scholar] [CrossRef]
- Dailey, S.H.; Tateya, I.; Montequin, D.; Welham, N.V.; Goodyer, E. Viscoelastic measurements of vocal folds using the linear skin rheometer. J. Voice Off. J. Voice Found. 2009, 23, 143–150. [Google Scholar] [CrossRef]
- Tran, Q.T.; Berke, G.S.; Gerratt, B.R.; Kreiman, J. Measurement of Young’s modulus in the in vivo human vocal folds. Ann. Otol. Rhinol. Laryngol. 1993, 102, 584–591. [Google Scholar] [CrossRef]
- Weiss, S.; Thomsen, S.L.; Lerch, R.; Döllinger, M.; Sutor, A. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocalfold modeling. J. Mech. Behav. Biomed. Mater. 2012, 102, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Ilg, J.; Rupitsch, S.J.; Sutor, A.; Lerch, R. Determination of Dynamic Material Properties of Silicone Rubber Using One-Point Measurements and Finite Element Simulations. IEEE Trans. Instrum. Meas. 2012, 61, 3031–3038. [Google Scholar] [CrossRef]
- Weiss, S.; Sutor, A.; Ilg, J.; Rupitsch, S.J.; Lerch, R. Measurement and Analysis of the Material Properties and Oscillation Characteristics of Synthetic Vocal Folds. Acta Acust. United Acust. 2016, 102, 214–229. [Google Scholar] [CrossRef]
- Maghzinajafabadi, M.; Lamprecht, R.; Semmler, M.; Sutor, A. Acoustic Pressure Pipette Aspiration Method Combined with Finite Element Analysis for Isotropic Materials. Appl. Sci. 2019, 9, 3875. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.W. Nonlinear viscoelastic characterization of human vocal fold tissues under large-amplitude oscillatory shear (LAOS). J. Rheol. 2018, 62, 695–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argatov, I.; Mishuris, G. Indentation Testing of Biological Materials; Advanced Structured Materials; Springer: Cham, Switzerland, 2018; Volume 91. [Google Scholar]
- Giesekus, H. Phänomenologische Rheologie: Eine Einführung; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Aoki, T.; Ohashi, T.; Matsumoto, T.; Sato, M. The pipette aspiration applied to the local stiffness measurement of soft tissues. Ann. Biomed. Eng. 1997, 25, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Ilg, J.; Sutor, A.; Weiß, S.; Lerch, R. Measurement of the elasticity Modulus of Artificial and Real Vocal Folds Using Pipette Aspiration. In Proceedings of the Models and Analysis of Vocal Emissions for Biomedical Applications: 7th International Workshop, Firenze, Italy, 25–27 August 2011. [Google Scholar]
- Brommundt, E.; Sachau, D. Schwingungslehre mit Maschinendynamik: Mit 286 Aufgaben; B.G. Teubner Verlag/GWV Fachverlage GmbH Wiesbaden: Wiesbaden, Germany, 2008. [Google Scholar] [CrossRef]
- Weiss, S.; Sutor, A.; Rupitsch, S.J.; Kniesburges, S.; Doellinger, M.; Lerch, R. Development of a small film sensor for the estimation of the contact pressure of artificial vocal folds. Proc. Mtgs. Acoust. 2013, 19, 060307. [Google Scholar]
- Gasior, M. Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian Spectrum Interpolation. Aip Conf. Proc. 2004, 732, 276. [Google Scholar]
- Min, Y.B.; Titze, I.R.; Alipour-Haghighi, F. Stress-strain response of the human vocal ligament. Ann. Otol. Rhinol. Laryngol. 1995, 104, 563–569. [Google Scholar] [CrossRef]
- Mathworks. Matlab Documentation. Available online: https://de.mathworks.com/help/matlab/ref/corrcoef.html (accessed on 9 April 2021).
- Titze, I.R. On the mechanics of vocal-fold vibration. J. Acoust. Soc. Am. 1976, 60, 1366–1380. [Google Scholar] [CrossRef]
- Hirano, M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr. 1974, 26, 89–94. [Google Scholar] [CrossRef]
- Hirano, M.; Kakita, Y.; Ohmaru, K.; Kurita, S. Structure and Mechanical Properties of the Vocal Fold; Speech and Language; Elsevier: Amsterdam, The Netherlands, 1982; Volume 7, pp. 271–297. [Google Scholar]
- Cochereau, T.; Bailly, L.; Orgéas, L.; Henrich Bernardoni, N.; Robert, Y.; Terrien, M. Mechanics of human vocal folds layers during finite strains in tension, compression and shear. J. Biomech. 2020, 110, 109956. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.W.; Tayama, N. Biomechanical effects of hydration in vocal fold tissues. Otolaryngol. Neck Surg. Off. J. Am. Acad. Otolaryngol.-Head Neck Surg. 2002, 126, 528–537. [Google Scholar] [CrossRef] [PubMed]
E (kPa) | G (kPa) | |
---|---|---|
Cyan | ||
Blue | ||
Yellow |
Sample | Contact Force in N |
---|---|
Cyan | 0.095 |
Blue | 0.098 |
Yellow | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheible, F.; Lamprecht, R.; Semmler, M.; Sutor, A. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique. Sensors 2021, 21, 2923. https://doi.org/10.3390/s21092923
Scheible F, Lamprecht R, Semmler M, Sutor A. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique. Sensors. 2021; 21(9):2923. https://doi.org/10.3390/s21092923
Chicago/Turabian StyleScheible, Florian, Raphael Lamprecht, Marion Semmler, and Alexander Sutor. 2021. "Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique" Sensors 21, no. 9: 2923. https://doi.org/10.3390/s21092923
APA StyleScheible, F., Lamprecht, R., Semmler, M., & Sutor, A. (2021). Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique. Sensors, 21(9), 2923. https://doi.org/10.3390/s21092923