Photoplethysmography in Normal and Pathological Sleep
Abstract
:1. Introduction to Photoplethysmography
1.1. Historical Overview
1.2. Technical Aspects of Photoplethysmography
1.3. Recent Developments in Photoplethysmography Technology
2. Applications of Photoplethysmography in Clinical Physiological Measurements in Healthy Subjects
PPG in Normal Sleep
3. Photoplethysmography Applications in Sleep-Disordered Breathing Diagnosis
3.1. In Obstructive Sleep Apnea
3.2. Obstructive Sleep Apnea and Hypopnea Detection
3.3. Sleep Staging in OSA Patients
3.4. In Central Sleep Apnea
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ijaz, M.F.; Attique, M.; Son, Y. Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods. Sensors 2020, 20, 2809. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamshilin, A.A.; Margaryants, N.B. Origin of Photoplethysmographic Waveform at Green Light. Phys. Procedia 2017, 86, 72–80. [Google Scholar] [CrossRef]
- Severinghaus, J.W. Takuo Aoyagi: Discovery of pulse oximetry. Anesth. Analg. 2007, 105 (Suppl. S6), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F. Pulse wave analysis. Br. J. Clin Pharm. 2001, 51, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Nilsson, L.M. Respiration Signals from Photoplethysmography. Anesth. Analg. 2013, 117, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.A.; Haddadin, A.S.; Tantawy, H.; Badr, T.M.; Stout, R.G.; Silverman, D.G.; Shelley, K.H. The relationship between the photoplethysmographic waveform and systemic vascular resistance. J. Clin. Monit. Comput. 2007, 21, 365–372. [Google Scholar] [CrossRef]
- Jonathan, M.J.; Leahy, M.J. Cellular phone-based photoplethysmographic imaging. J. Biophotonics 2011, 4, 293–296. [Google Scholar] [CrossRef]
- Wu, T.; Blazek, V.; Schmitt, H.J. Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of the dermal perfusion changes. Proc. SPIE 4163 Opt. Tech. Instrum. Meas. Blood Compos. Struct. Dyn. 2000, 4163, 62–70. [Google Scholar]
- Leonhardt, S.; Leicht, L.; Teichmann, D. Unobtrusive Vital Sign Monitoring in Automotive Environments—A Review. Sensors 2018, 18, 3080. [Google Scholar] [CrossRef] [Green Version]
- Khanam, F.-T.-Z.; Al-Naji, A.; Chahl, J. Remote Monitoring of Vital Signs in Diverse Non-Clinical and Clinical Scenarios Using Computer Vision Systems: A Review. Appl. Sci. 2019, 9, 4474. [Google Scholar] [CrossRef] [Green Version]
- Van Gastel, M.; Stuijk, S.; Overeem, S.; van Dijk, J.P.; van Gilst, M.M.; de Haan, G. Camera-based vital signs monitoring during sleep—A proof of concept study. IEEE J. Biomed. Health Inf. 2020. [Google Scholar] [CrossRef]
- Casalino, G.; Castellano, G.; Zaza, G. A mHealth solution for contact-less self-monitoring of blood oxygen saturation. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 8–10 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.W.; Lo, C.C.; Voigt, K.; Vogelmeier, C. Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 2003, 28 (Suppl. S1), S48–S53. [Google Scholar] [CrossRef]
- Vanoli, E. Heart Rate Variability during Specific Sleep Stages. A Comparison of Healthy Subjects with Patients after Myocardial Infarction. Circulation 1995, 91, 1918–1922. [Google Scholar] [CrossRef] [PubMed]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alesse, C.A.; Bailey, D.; Coleman, J., Jr.; Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice Parameters for the indications for polysomnography and related procedures: An update for 2005. Sleep 2005, 28, 499–521. [Google Scholar] [CrossRef] [Green Version]
- Rechtschaffen, A.; Kales, A. A Manual of Standardised Terminology, Techniques and Scoring for Sleep Stages in Human Subjects; Brain information Service: Los Angeles, CA, USA, 1968. [Google Scholar]
- Masa Jimenez, J.F.; Barbe Illa, F.; Capote Gil, F.; Chiner Vives, E.; de Atauri, J.D.; Durán Cantolla, J.; López Ortiz, S.; Marín Trigo, J.M.; Montserrat Canal, J.M.; Rubio González, M.; et al. Resources and delays in the diagnosis of sleep apnea-hypopnea syndrome. Arch. Bronconeumol. 2007, 43, 188–198. [Google Scholar] [CrossRef]
- Rahaghi, F.; Basner, R.C. Delayed diagnosis of obstructive sleep apnea: Don’t ask, don’t tell. Sleep Breath 1999, 3, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Standards of Practice Committee of the American Sleep Disorders Association. Practice parameters for the use of portable recording in the assessment of Obstructive Sleep Apnea. Sleep 1994, 26, 907–913. [Google Scholar]
- Tobaldini, E.; Costantino, G.; Solbiati, M.; Cogliati, C.; Kara, T.; Nobili, L.; Montano, N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci. Biobehav. Rev. 2017, 74 Pt B, 321–329. [Google Scholar] [CrossRef]
- Gruwez, A.; Libert, W.; Ameye, L.; Bruyneel, M. Reliability of commercially available sleep and activity trackers with manual switch-to-sleep mode activation in free-living healthy individuals. Int. J. Med. Inf. 2017, 102, 87–92. [Google Scholar] [CrossRef]
- Mouritzen, N.J.; Larsen, L.H.; Lauritzen, M.H.; Kjær, T.W. Assessing the performance of a commercial multisensory sleep tracker. PLoS ONE 2020, 15, e0243214. [Google Scholar] [CrossRef]
- De Zambotti, M.; Goldstone, A.; Claudatos, S.; Colrain, I.M.; Baker, F.C. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. Chronobiol. Int. 2018, 35, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, P.; Weysen, T.; Goelema, M.S.; Møst, E.I.S.; Radha, M.; Lunsingh Scheurleer, C.; van den Heuvel, L.; Aarts, R.M. Validation of Photoplethysmography-Based Sleep Staging Compared with Polysomnography in Healthy Middle-Aged Adults. Sleep 2017, 40, zsx097. [Google Scholar] [CrossRef] [PubMed]
- Walch, O.; Huang, Y.; Forger, D.; Goldstein, C. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep 2019, 42, zsz180. [Google Scholar] [CrossRef] [PubMed]
- Beattie, Z.; Oyang, Y.; Statan, A.; Ghoreyshi, A.; Pantelopoulos, A.; Russell, A.; Heneghan, C. Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals. Physiol. Meas. 2017, 38, 1968–1979. [Google Scholar] [CrossRef]
- de Zambotti, M.; Cellini, N.; Goldstone, A.; Colrain, I.M.; Baker, F.C. Wearable Sleep Technology in Clinical and Research Settings. Med. Sci. Sports Exerc. 2019, 51, 1538–1557. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, R.S.; Van Hout, S. The American Academy of Sleep Medicine inter-scorer reliability program: Sleep stage scoring. J. Clin. Sleep Med. 2013, 9, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Eyal, S.; Baharav, A. Sleep insights from the finger tip: How photoplethysmography can help quantify sleep. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Lu, S.; Zhao, H.; Ju, K.; Shin, K.; Lee, M.; Shelley, K.; Chon, K. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J. Clin. Monit. Comput. 2008, 22, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.; Orini, M.; Bail’on, R.; Vergara, J.M.; Mainardi, L.; Laguna, P. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during nonstationary conditions. Physiol. Meas. 2010, 31, 1271–1290. [Google Scholar] [CrossRef] [PubMed]
- Motin, M.A.; Karmakar, C.; Palaniswami, M.; Penzel, T. Photoplethysmographic-based automated sleep–wake classification using a support vector machine. Physiol. Meas. 2020, 41, 075013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, G. A Multi-Class Automatic Sleep Staging Method Based on Photoplethysmography Signals. Entropy 2021, 23, 116. [Google Scholar] [CrossRef]
- Bendjelid, K. The pulse oximetry plethysmographic curve revisited. Curr. Opin. Crit. Care 2008, 14, 348–353. [Google Scholar] [CrossRef]
- Tolle, F.A.; Judy, W.V.; Yu, P.L.; Markand, O.N. Reduced stroke volume related to pleural pressure in obstructive sleep apnea. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1718–1724. [Google Scholar] [CrossRef]
- Hietakoste, S.; Korkalainen, H.; Kainulainen, S.; Sillanmäki, S.; Nikkonen, S.; Myllymaa, S.; Duce, B.; Töyräs, J.; Leppänen, T. Longer apneas and hypopneas are associated with greater ultra-short-term HRV in obstructive sleep apnea. Sci. Rep. 2020, 10, 21556. [Google Scholar] [CrossRef]
- Argod, J.; Pépin, J.L.; Lévy, P. Differentiating Obstructive and Central Sleep Respiratory Events through Pulse Transit Time. Am. J. Respir. Crit. Care Med. 1998, 158, 1778–1783. [Google Scholar] [CrossRef]
- Haba-Rubio, J.; Darbellay, G.; Herrmann, F.R.; Frey, J.G.; Fernandes, A.; Vesin, J.M.; Thiran, J.P.; Tschopp, J.M. Obstructive sleep apnea syndrome: Effect of respiratory events and arousal on pulse wave amplitude measured by photoplethysmography in NREM sleep. Sleep Breath 2005, 9, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Chung, F.; Liao, P.; Elsaid, H.; Islam, S.; Shapiro, C.M.; Sun, Y. Oxygen desaturation index from nocturnal oximetry: A sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesth. Analg. 2012, 114, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Terrill, P.I. A review of approaches for analysing obstructive sleep apnoea-related patterns in pulse oximetry data. Respirology 2020, 25, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Deviaene, M.; Lázaro, J.; Huysmans, D.; Testelmans, D.; Buyse, B.; Van Huffel, S.; Varon, C. Sleep Apnea Detection Using Pulse Photoplethysmography. In Proceedings of the 2018 Computing in Cardiology Conference (CinC), Maastricht, The Netherlands, 23–26 September 2018; Volume 45. [Google Scholar]
- Barak-Shinar, D.; Amos, Y.; Bogan, R.K. Sleep disordered breathing analysis in a general population using standard pulse oximeter signals. Sleep Breath 2013, 17, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, H.; Ma, Y. Evaluation of pulse oximeter derived photoplethysmographic signals for obstructive sleep apnea diagnosis. Medicine 2017, 96, e6755. [Google Scholar] [CrossRef] [PubMed]
- Papini, G.B.; Fonseca, P.; van Gilst, M.M.; Bergmans, J.W.M.; Vullings, R.; Overeem, S. Wearable monitoring of sleep‑disordered breathing: Estimation of the apnea–hypopnea index using wrist‑worn reflective photoplethysmography. Sci. Rep. 2020, 10, 13512. [Google Scholar] [CrossRef] [PubMed]
- Hayano, J.; Yamamoto, H.; Nonaka, I.; Komazawa, M.; Itao, K.; Ueda, N.; Tanaka, H.; Yuda, E. Quantitative detection of sleep apnea with wearable watch device. PLoS ONE 2020, 15, e0237279. [Google Scholar] [CrossRef]
- Korkalainen, H.; Aakko, J.; Duce, B.; Kainulainen, S.; Leino, A.; Nikkonen, S.; Afara, I.O.; Myllymaa, S.; Töyräs, J.; Leppänen, T. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea. Sleep 2020, 43, zsaa098. [Google Scholar] [CrossRef]
- Amir, O.; Barak-Shinar, D.; Henry, A.; Smart, F.W. Photoplethysmography as a single source for analysis of sleep disordered breathing in patients with severe cardiovascular disease. J. Sleep Res. 2012, 21, 94–100. [Google Scholar] [CrossRef]
- Biswas, S.; Shao, Y.; Hachisu, T.; Nguyen-Dang, T.; Visell, Y. Integrated Soft Optoelectronics for Wearable Health Monitoring. Adv. Mat. Tech. 2020. [Google Scholar] [CrossRef]
- Khan, Y.; Han, D.; Pierre, A.; Ting, J.; Wang, X.; Lochner, C.M.; Bovo, G.; Yaacobi-Gross, N.; Newsome, C.; Wilson, R.; et al. A flexible organic reflectance oximeter array. Proc. Natl. Acad. Sci. USA 2018, 115, E11015–E11024. [Google Scholar] [CrossRef] [Green Version]
- Pevernagie, D.A.; Gnidovec-Strazisar, B.; Grote, L.; Heinzer, R.; McNicholas, W.T.; Penzel, T.; Randerath, W.; Schiza, S.; Verbraecken, J.; Arnardottir, E.S. On the rise and fall of the apnea-hypopnea index: A historical review and critical appraisal. J. Sleep Res. 2020, 29, e13066. [Google Scholar] [CrossRef]
- Coniglio, A.C.; Mentz, R.J. Sleep Breathing Disorders in Heart Failure. Heart Fail. Clin. 2020, 16, 45–51. [Google Scholar] [CrossRef]
- McNicholas, W.T. COPD-OSA Overlap Syndrome: Evolving Evidence Regarding Epidemiology, Clinical Consequences, and Management. Chest 2017, 152, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Yee, B.J.; Piper, A.J.; Zwillich, C.W.; Grunstein, R.R. Obesity hypoventilation syndrome: Hypoxemia during continuous positive airway pressure. Chest 2007, 131, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Masa, J.F.; Corral, J.; Pereira, R.; Duran-Cantolla, J.; Cabello, M.; Hernández-Blasco, L.; Monasterio, C.; Alonso, A.; Chiner, E.; Rubio, M.; et al. Effectiveness of home respiratory polygraphy for the diagnosis of sleep apnoea and hypopnoea syndrome. Thorax 2011, 66, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Alqurashi, Y.D.; Morrell, M.J.; Mandic, D.P. Hearables: Automatic Overnight Sleep Monitoring with Standardized In-Ear EEG Sensor. IEEE Trans. Biomed. Eng. 2020, 67, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imtiaz, S.A. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors 2021, 21, 1562. [Google Scholar] [CrossRef]
- Kaveh, R.; Doong, J.; Zhou, A.; Schwendeman, C.; Gopalan, K.; Burghardt, F.L.; Arias, A.C.; Maharbiz, M.M.; Muller, R. Wireless User-Generic Ear EEG. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 727–737. [Google Scholar] [CrossRef]
- Davies, H.J.; Williams, I.; Peters, N.S.; Mandic, D.P. In-Ear SpO2: A Tool for Wearable, Unobtrusive Monitoring of Core Blood Oxygen Saturation. Sensors 2020, 20, 4879. [Google Scholar] [CrossRef]
- Budidha, K.; Kyriacou, P.A. The human ear canal: Investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation. Physiol. Meas. 2014, 35, 111–128. [Google Scholar] [CrossRef]
- Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site. Front. Physiol. 2019, 10, 198. [Google Scholar] [CrossRef]
- Light, M.P.; Casimire, T.N.; Chua, C.; Koushyk, V.; Burschtin, O.E.; Ayappa, I.; Rapoport, D.M. Addition of frontal EEG to adult home sleep apnea testing: Does a more accurate determination of sleep time make a difference? Sleep Breath 2018, 22, 1179–1188. [Google Scholar] [CrossRef]
- Sabil, A.; Vanbuis, J.; Baffet, G.; Feuilloy, M.; Le Vaillant, M.; Meslier, N.; Gagnadoux, F. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea. J. Sleep Res. 2019, 28, e12795. [Google Scholar] [CrossRef] [PubMed]
- Ayappa, I.; Norman, R.G.; Seelall, V.; Rapoport, D.M. Validation of a self-applied unattended monitor for sleep disordered breathing. J. Clin Sleep Med. 2008, 4, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dafna, E.; Tarasiuk, A.; Zigel, Y. Sleep staging using nocturnal sound analysis. Sci. Rep. 2018, 8, 13474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshaer, H.; Hummel, R.; Mendelson, M.; Marshal, T.; Bradley, T.D. Objective relationship between sleep apnea and frequency of snoring assessed by machine learning. J. Clin. Sleep Med. 2019, 15, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Chriskos, P.; Frantzidis, C.A.; Nday, C.M.; Gkivogkli, P.T.; Bamidis, P.D.; Kourtidou-Papadeli, C. A review on current trends in automatic sleep staging through bio-signal recordings and future challenges. Sleep Med. Rev. 2021, 55, 101377. [Google Scholar] [CrossRef] [PubMed]
Signal (Type and Processing) | Usefulness | Limitations | |
---|---|---|---|
SpO2 | AC and DC components of PPG | Ambulatory monitoring Hospital monitoring Anesthesia ICU | Dyshemoglobinemias Reduced accuracy for low values |
Heart Rate | AC component of PPG Upsampling and algorithm to reject artefacts PPG-derived HR = pulse rate (PR) | Ambulatory monitoring Hospital monitoring Anesthesia ICU Neonatal care Sleep (HR variability) | Cardiac arrhythmias Movement artefacts |
Blood pressure | DC component of PPG Surrogate pulse measure of BP = pulse transit time (PTT), calculated from ECG R wave to the foot of PPG pulse | Ambulatory monitoring Hospital monitoring Anesthesia ICU | Cardiac pre-ejection period to PTT |
Respiratory rate | DC component of PPG Extraction algorithm to isolate respiratory induced intensity variation | Ambulatory monitoring Hospital monitoring Anesthesia ICU Neonatal care Sleep |
Wearable | Technique | Overall Performance vs. Polysomnography | Limitations |
---|---|---|---|
actigraphy -Actiwatch 64, actiwatch spectrum -Sensewear pro | Accelerometer ± skin temperature | Overestimation of SE, TST, and underestimation of SOL, WASO | -High cost -Time-consuming interpretation by trained staff (missing data, motion artefacts to remove) |
consumer wearables (first generation) -Fitbit, Fitbit ultra, Fitbit Flex -Misfit Shine -Jawbone Up | Accelerometer | Overestimation of SE, TST, and underestimation of WASO | -Commercial devices not developed for clinical use -Raw data and manufacturer algorithms are not accessible -Motion artefacts |
consumer wearables (with sleep mode activation) -Jawbone Up Move -Withings pulse O2 | Accelerometer | Overestimation of SE, TST, and TIB | -Commercial devices not developed for clinical use -Raw data and manufacturer algorithms are not accessible -Motion artefacts |
consumer wearables (last generation) -Fitbit surge -Fitbit charge 2 -Apple watch Devices under development (requiring validation vs. PSG):
| Accelerometer skin temperature ± PPG | Overestimation of SE, TST, and underestimation of SOL | -Commercial devices not developed for clinical use -Raw data and manufacturer algorithms rarely accessible -Motion artefacts -Failure of PPG signal capture |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulcan, R.S.; André, S.; Bruyneel, M. Photoplethysmography in Normal and Pathological Sleep. Sensors 2021, 21, 2928. https://doi.org/10.3390/s21092928
Vulcan RS, André S, Bruyneel M. Photoplethysmography in Normal and Pathological Sleep. Sensors. 2021; 21(9):2928. https://doi.org/10.3390/s21092928
Chicago/Turabian StyleVulcan, Ramona S., Stephanie André, and Marie Bruyneel. 2021. "Photoplethysmography in Normal and Pathological Sleep" Sensors 21, no. 9: 2928. https://doi.org/10.3390/s21092928
APA StyleVulcan, R. S., André, S., & Bruyneel, M. (2021). Photoplethysmography in Normal and Pathological Sleep. Sensors, 21(9), 2928. https://doi.org/10.3390/s21092928