Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application
Abstract
:1. Introduction
2. Electromagnetic Analysis for Proposed Antenna Design
3. Structural Analysis for Thermal Reconfigurability
4. Fabrication and Experimental Demonstration
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirazi, M.; Huang, J.; Li, T.; Gong, X. A Switchable-Frequency Slot-Ring Antenna Element for Designing a Reconfigurable Array. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 229–233. [Google Scholar] [CrossRef]
- Ren, J.; Yang, X.; Yin, J.; Yin, Y. A Novel Antenna with Reconfigurable Patterns Using H-Shaped Structures. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 915–918. [Google Scholar] [CrossRef]
- Yashchyshyn, Y.; Derzakowski, K.; Bogdan, G.; Godziszewski, K.; Nyzovets, D.; Kim, C.H.; Park, B. 28 GHz Switched-Beam Antenna Based on S-PIN Diodes for 5G Mobile Communications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 225–228. [Google Scholar] [CrossRef]
- Cheng, T.; Tam, K.W. A Wideband Bandpass Filter with Reconfigurable Bandwidth Based on Cross-Shaped Resonator. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 909–911. [Google Scholar] [CrossRef]
- Phon, R.; Ghosh, S.; Lim, S. Novel Multifunctional Reconfigurable Active Frequency Selective Surface. IEEE Trans. Antennas Propag. 2019, 67, 1709–1718. [Google Scholar] [CrossRef]
- Lim, J.H.; Back, G.T.; Ko, Y., II; Song, C.W.; Yun, T.Y. A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN. IEEE Trans. Antennas Propag. 2010, 58, 2404–2411. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. Reconfigurable antennas: Switching techniques—A survey. Electronics 2020, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Haupt, R.L.; Lanagan, M. Reconfi gurable Antennas. Synth. Lect. Antennas 2013, 55, 49–61. [Google Scholar]
- Pal, B.; Mandal, M.K.; Dwari, S. Varactor Tuned Dual-Band Bandpass Filter with Independently Tunable Band Positions. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 255–257. [Google Scholar] [CrossRef]
- Sam, S.; Lim, S. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications [Letters]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 657–660. [Google Scholar] [CrossRef]
- Da Costa, I.F.; Cerqueira, S.A.; Spadoti, D.H.; Da Silva, L.G.; Ribeiro, J.A.J.; Barbin, S.E. Optically Controlled Reconfigurable Antenna Array for mm-Wave Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2142–2145. [Google Scholar] [CrossRef] [Green Version]
- Tawk, Y.; Albrecht, A.R.; Hemmady, S.; Balakrishnan, G.; Christodoulou, C.G. Optically pumped frequency reconfigurable antenna design. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 280–283. [Google Scholar] [CrossRef]
- Tan, L.R.; Wu, R.X.; Poo, Y. Magnetically reconfigurable siw antenna with tunable frequencies and polarizations. IEEE Trans. Antennas Propag. 2015, 63, 2772–2776. [Google Scholar] [CrossRef]
- Yang, H.; Yu, T.; Wang, Q.; Lei, M. Wave manipulation with magnetically tunable metasurfaces. Sci. Rep. 2017, 7, 5441. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.B.; Yong, S.; Bernhard, J.T. Intermodulation and harmonic distortion in frequency reconfigurable slot antenna pairs. IEEE Trans. Antennas Propag. 2014, 62, 1138–1146. [Google Scholar] [CrossRef]
- Goncalves, R.; Carvalho, N.B.; Pinho, P. Intermodulation in active reconfigurable antennas. In Proceedings of the 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), Leuven, Belgium, 2–4 April 2014; pp. 14–16. [Google Scholar] [CrossRef]
- Park, E.; Lim, S. Control of rejection frequency and density of output spectrum by programming nonuniform two channels with ternary fluidic system. Smart Mater. Struct. 2021, 30, 035028. [Google Scholar] [CrossRef]
- McMichael, I.T. A Mechanically Reconfigurable Patch Antenna with Polarization Diversity. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1186–1189. [Google Scholar] [CrossRef]
- Jouade, A.; Himdi, M.; Chauloux, A.; Colombel, F. Mechanically Pattern-Reconfigurable Bended Horn Antenna for High-Power Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 457–460. [Google Scholar] [CrossRef]
- Tawk, Y.; Costantine, J.; Avery, K.; Christodoulou, C.G. Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas. IEEE Trans. Antennas Propag. 2011, 59, 1773–1778. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, H.; Lim, S. Mechanically actuated frequency reconfigurable metamaterial absorber. Sens. Actuators A Phys. 2019, 299, 111619. [Google Scholar] [CrossRef]
- Wu, B.; Okoniewski, M.; Hayden, C. A pneumatically controlled reconfigurable antenna with three states of polarization. IEEE Trans. Antennas Propag. 2014, 62, 5474–5484. [Google Scholar] [CrossRef]
- Huff, G.H.; Member, S.; Pan, H.; Hartl, D.J.; Frank, G.J.; Bradford, R.L.; Baur, J.W. A Physically Reconfigurable Structurally Embedded Vascular Antenna. IEEE Trans. Antennas Propag. 2017, 65, 2282–2288. [Google Scholar] [CrossRef]
- Jang, T.; Zhang, C.; Youn, H.; Zhou, J.; Guo, L.J. Semitransparent and flexible mechanically reconfigurable electrically small antennas based on tortuous metallic micromesh. IEEE Trans. Antennas Propag. 2017, 65, 150–158. [Google Scholar] [CrossRef]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.Y.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 2013, 102, 121101. [Google Scholar] [CrossRef] [Green Version]
- Jianguo, C.; Xiaowei, D.; Jian, F. Morphology analysis of a foldable kirigami structure based on Miura origami. Smart Mater. Struct. 2014, 23, 94011. [Google Scholar] [CrossRef]
- Neville, R.M.; Chen, J.; Guo, X.; Zhang, F.; Wang, W.; Dobah, Y.; Scarpa, F.; Leng, J.; Peng, H.X. A Kirigami shape memory polymer honeycomb concept for deployment. Smart Mater. Struct. 2017, 26, 05LT03. [Google Scholar] [CrossRef] [Green Version]
- Salim, A.; Naqvi, A.H.; Park, E.; Pham, A.D.; Lim, S. Inkjet printed kirigami inspired split ring resonator for disposable, low cost strain sensor applications. Smart Mater. Struct. 2020, 29, 015016. [Google Scholar] [CrossRef]
- Sareh, S.; Rossiter, J. Kirigami artificial muscles with complex biologically inspired morphologies. Smart Mater. Struct. 2013, 22, 22. [Google Scholar] [CrossRef]
- Li, Q.; Shih, T.Y. A Kirigami-Inspired Pattern-Reconfigurable Antenna with Switchable Omnidirectional and Unidirectional Beams. In Proceedings of the 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 4–9 January 2021; pp. 151–152. [Google Scholar] [CrossRef]
- Shah, S.I.H.; Lim, S. Bioinspired DNA Origami Quasi-Yagi Helical Antenna with Beam Direction and Beamwidth Switching Capability. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Lim, S. Frequency reconfigurable antenna actuated by three-storey tower kirigami. Extrem. Mech. Lett. 2020, 39, 100833. [Google Scholar] [CrossRef]
- Imran, S.; Shah, H.; Sarkar, A. Electromechanically Deployable High-Gain Pop-Up Antenna Using Shape Memory Alloy and Kirigami Technology. IEEE Access 2020, 8, 225210–225218. [Google Scholar] [CrossRef]
- Mazlouman, S.J.; Mahanfar, A.; Menon, C.; Vaughan, R.G. Square ring antenna with reconfigurable patch using shape memory alloy actuation. IEEE Trans. Antennas Propag. 2012, 60, 5627–5634. [Google Scholar] [CrossRef]
- Richards, W.F.; Ou, J.D.; Long, S.A. Communications A Theoretical and Experimental Investigation of Annular, Annular Sector, and Circular Sector Microstrip Antennas. IEEE Trans. Antennas Propag. 1984, 32, 864–867. [Google Scholar] [CrossRef]
- Kumar, S.; Subhradeep, G.; Lolit, C.L.; Singh, K. Modal analysis of probe-fed circular sector microstrip antenna with and without variable air gap: Investigation with modified cavity model. Int. J. RF Microw. Comput. Eng. 2017, 28, e21172. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.I.H.; Sarkar, A.; Phon, R.; Lim, S. Two-Dimensional Electromechanically Transformable Metasurface with Beam Scanning Capability Using Four Independently Controllable Shape Memory Alloy Axes. Adv. Opt. Mater. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Park, Y.L.; Majidi, C.; Kramer, R.; Brard, P.; Wood, R.J. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 2010, 20. [Google Scholar] [CrossRef] [Green Version]
- Tepáyotl-Ramírez, D.; Lu, T.; Park, Y.L.; Majidi, C. Collapse of triangular channels in a soft elastomer. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
- Peroulis, D.; Sarabandi, K.; Katehi, L.P.B. Design of reconfigurable slot antennas. IEEE Trans. Antennas Propag. 2005, 53, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Guo, L.; Ma, R.; Zhang, W. Frequency reconfigurable microstrip patch antenna. WIT Trans. Inf. Commun. Technol. 2014, 49, 423–430. [Google Scholar] [CrossRef]
- Song, L.; Gao, W.; Chui, C.O.; Rahmat-Samii, Y. Wideband Frequency Reconfigurable Patch Antenna with Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Zohur, A.; Mopidevi, H.; Member, S.; Rodrigo, D.; Member, S.; Unlu, M.; Jofre, L.; Cetiner, B.A. RF MEMS Recon fi gurable Two-Band Antenna. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 72–75. [Google Scholar] [CrossRef]
- Sumana, L.; Sundarsingh, E.F.; Priyadharshini, S. Shape Memory Alloy-Based Frequency Reconfigurable Ultrawideband Antenna for Cognitive Radio Systems. IEEE Trans. Components Packag. Manuf. Technol. 2021, 11, 3–10. [Google Scholar] [CrossRef]
- Jeong, H.; Cui, Y.; Tentzeris, M.M.; Lim, S. Hybrid (3D and inkjet) printed electromagnetic pressure sensor using metamaterial absorber. Addit. Manuf. 2020, 35, 101405. [Google Scholar] [CrossRef]
- Cholleti, E.R.; Stringer, J.; Assadian, M.; Battmann, V.; Bowen, C.; Aw, K. Highly Stretchable Capacitive Sensor with Printed Carbon Black Electrodes on Barium Titanate Elastomer Composite. Sensors 2018, 19, 42. [Google Scholar] [CrossRef] [Green Version]
- Jahn, D.; Eckstein, R.; Schneider, L.M.; Born, N.; Hernandez-Sosa, G.; Balzer, J.C.; Al-Naib, I.; Lemmer, U.; Koch, M. Digital Aerosol Jet Printing for the Fabrication of Terahertz Metamaterials. Adv. Mater. Technol. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Yoo, Y.; Jeong, H.; Lim, D.; Lim, S. Stretchable screen-printed metasurfaces for wireless strain sensing applications. Extrem. Mech. Lett. 2020, 41, 100998. [Google Scholar] [CrossRef]
- Ren, J.; Hu, W.; Yin, Y.; Fan, R. Compact Printed MIMO Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1517–1520. [Google Scholar]
- Turitsyna, E.G.; Webb, S. Simple design of FBG-based VSB filters for ultra-dense WDM transmission. Electron. Lett. 2005, 41, 89–91. [Google Scholar] [CrossRef]
Ref. | Tuning Tech. | Method | Tuning Range (%) | Size (mm) (W × L × H) | Gain (dBi) | Efficiency (%) | DC Biasing Circuit | Complexity | Cost |
---|---|---|---|---|---|---|---|---|---|
[40] | Electrical | Pin-diode | 49 | 127 × 127 × 2.54 | −1.1 | 47 | Yes | High | High |
[41] | Electrical | Varactor-diode | 25 | 150 × 150 × 1.524 | N/A | N/A | Yes | High | High |
[11] | Optical | Photoconductive switch | 25 | 4.56 × 48.94 × N/A | 8–9 | N/A | No | High | High |
[42] | Mechanical | Microfluidic | 70 | 100 × 100 × 3.175 | 6.98–7.34 | 80.5–88.0 | No | Low | Low |
[43] | Mechanical | MEMS switch | 149 | 45 × 41.8 × 7.126 | 1.2–3.3 | 75–85 | No | High | Low |
[44] | Thermal | SMA | 148 | 60 × 50 × 1.6 | −17.13–3.18 | N/A | No | Low | Low |
This work | Thermal | SMA spring | 30 | 60 × 60 × 5 | 4.26–6.41 | 51.44–75.5 | No | Low | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Lee, S.; Lim, S. Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application. Sensors 2021, 21, 3026. https://doi.org/10.3390/s21093026
Lee M, Lee S, Lim S. Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application. Sensors. 2021; 21(9):3026. https://doi.org/10.3390/s21093026
Chicago/Turabian StyleLee, Minjae, Sukwon Lee, and Sungjoon Lim. 2021. "Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application" Sensors 21, no. 9: 3026. https://doi.org/10.3390/s21093026
APA StyleLee, M., Lee, S., & Lim, S. (2021). Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application. Sensors, 21(9), 3026. https://doi.org/10.3390/s21093026