Handling Data Heterogeneity in Electricity Load Disaggregation via Optimized Complete Ensemble Empirical Mode Decomposition and Wavelet Packet Transform
Abstract
:1. Introduction
1.1. Literature Review
1.2. Limitations of Existing Works
- No previous work has conducted research on merging heterogeneous ELD datasets.
- It is difficult to ensure fair performance evaluation and comparison between heterogeneous ELD datasets given that about 40 performance metrics were used.
- There is limited investigation of the powerline noise transformation between heterogeneous ELD datasets.
1.3. Major Research Contributions
- It is the first of its kind to merge heterogeneous ELD datasets.
- It unifies the performance comparison of ELD models with merged heterogeneous datasets.
- An optimized complete ensemble empirical model decomposition and wavelet packet transform (OCEEMD–WPT) is proposed, which provides in-depth decomposition of electricity data and enhances the performance of powerline noise transformation.
- A feasibility study is carried out to confirm the enhancement of the deep learning model given the increased size of training data (after combining heterogeneous datasets).
2. Datasets and Methodology
2.1. Benchmark Electricity Load Disaggregation Datasets
2.2. Overview of the Proposed Powerline Noise Transformation Approach
2.3. Optimized Complete Ensemble Empirical Model Decomposition and Wavelet Packet Transform
2.3.1. Optimized Complete Ensemble Empirical Model Decomposition
2.3.2. Wavelet Packet Transform
Algorithm 1 |
Input: Training datasets |
Output: NSGA-III-based OCEEMD–WPT Model |
1. Calculate the number of reference points; |
2. Generate NSGA-III parameters such as population size and values of the objective functions; |
3. Apply non-dominated sorting on the population; while iterations maximum number of_iterations do |
4. Apply tournament selection with two parents in terms of probability; |
5. Apply crossover between two parents; |
6. Apply non-dominated sorting on the population; |
7. Associatae the populations with reference points; |
8. Apply the niche preservation to select individuals associated with each reference point; |
9. Store the niche obtained solutions for the next generation; |
10. i = i + 1; |
End while |
Model←Pareto optimal solutions |
3. Analysis and Comparison
3.1. Performance Evaluation of Proposed Work
- The larger the number of classes in the originated ELD dataset, the larger the average improvement in SNR.
- The larger the number of classes in the destination ELD dataset, the larger the average improvement in SNR.
3.2. Study on the Contribution of NSGA-III to Solving Controlled Coefficients
3.3. Study on the Contribution of Merging Complete Ensemble Empirical Model Decomposition and Wavelet Packet Transform
3.4. Performance Comparison between the Proposed Approach and Existing Works
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masyagina, O.V.; Menyailo, O.V. The impact of permafrost on carbon dioxide and methane fluxes in Siberia: A meta-analysis. Environ. Res. 2020, 182, 109096. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. IoT-based Big Data secure management in the Fog over a 6G Wireless Network. IEEE Internet Things J. 2020, 8, 5164–5171. [Google Scholar] [CrossRef]
- Alsaidan, I.; Khodaei, A.; Gao, W. A comprehensive battery energy storage optimal sizing model for microgrid applications. IEEE Trans. Power Syst. 2017, 33, 3968–3980. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Arévalo, P.; Jurado, F. A comprehensive electrical-gas-hydrogen Microgrid model for energy management applications. Energy Convers. Manag. 2021, 228, 113726. [Google Scholar] [CrossRef]
- Chi, H.R.; Tsang, K.F.; Chui, K.T.; Chung, H.S.H.; Ling, B.W.K.; Lai, L.L. Interference-mitigated ZigBee-based advanced metering infrastructure. IEEE Trans. Ind. Informat. 2016, 12, 672–684. [Google Scholar] [CrossRef]
- Chen, Y.; Martínez-Ortega, J.F.; Castillejo, P.; López, L. A homomorphic-based multiple data aggregation scheme for smart grid. IEEE Sens. J. 2019, 19, 3921–3929. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, R.; Kumar, M.; Joshua, C.P.C.; Srinivas, K. Energy management using non-intrusive load monitoring techniques-State-of-the-art and future research directions. Sustain. Cities Soc. 2020, 62, 102411. [Google Scholar] [CrossRef]
- Yuan, X.; Han, P.; Duan, Y.; Alden, R.E.; Rallabandi, V.; Ionel, D.M. Residential Electrical Load Monitoring and Modeling–State of the Art and Future Trends for Smart Homes and Grids. Electr. Power Compon. Syst. 2020, 48, 1125–1143. [Google Scholar] [CrossRef]
- Nalmpantis, C.; Vrakas, D. Machine learning approaches for non-intrusive load monitoring: From qualitative to quantitative comparation. Artif. Intell. Rev. 2019, 52, 217–243. [Google Scholar] [CrossRef]
- Pereira, L.; Nunes, N. Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and tools—A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1265. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Dong, Z.Y.; Wang, B.; Zhao, J.; Huang, J. A practical solution for non-intrusive type II load monitoring based on deep learning and post-processing. IEEE Trans. Smart Grid 2019, 11, 148–160. [Google Scholar] [CrossRef]
- Houidi, S.; Fourer, D.; Auger, F. On the use of concentrated time–frequency representations as input to a deep convolutional neural network: Application to non intrusive load monitoring. Entropy 2020, 22, 911. [Google Scholar] [CrossRef] [PubMed]
- Faustine, A.; Pereira, L.; Klemenjak, C. Adaptive weighted recurrence graphs for appliance recognition in non-intrusive load monitoring. IEEE Trans. Smart Grid 2020, 12, 398–406. [Google Scholar] [CrossRef]
- Iqbal, H.K.; Malik, F.H.; Muhammad, A.; Qureshi, M.A.; Abbasi, M.N.; Chishti, A.R. A critical review of state-of-the-art non-intrusive load monitoring datasets. Electr. Power Syst. Res. 2021, 192, 106921. [Google Scholar] [CrossRef]
- Pereira, M.; Velosa, N.; Pereira, L. dsCleaner: A Python Library to Clean, Preprocess and Convert Non-Intrusive Load Monitoring Datasets. Data 2019, 4, 123. [Google Scholar] [CrossRef] [Green Version]
- Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong, D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. Brick: Metadata schema for portable smart building applications. Appl. Energy 2018, 226, 1273–1292. [Google Scholar] [CrossRef]
- Kriechbaumer, T.; Jacobsen, H.A. BLOND, a building-level office environment dataset of typical electrical appliances. Sci. Data 2018, 5, 180048. [Google Scholar] [CrossRef]
- Mukaroh, A.; Le, T.T.H.; Kim, H. Background Load Denoising across Complex Load Based on Generative Adversarial Network to Enhance Load Identification. Sensors 2020, 20, 5674. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Wang, Q.; Hu, J.; Fan, H.; He, J. Scale-and context-aware convolutional non-intrusive load monitoring. IEEE Trans. Power Syst. 2020, 35, 2362–2373. [Google Scholar] [CrossRef] [Green Version]
- Klemenjak, C.; Kovatsch, C.; Herold, M.; Elmenreich, W. A synthetic energy dataset for non-intrusive load monitoring in households. Sci. Data 2020, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the Workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 21 August 2011; pp. 59–62. [Google Scholar]
- Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes. Sci. Data 2015, 2, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahl, M.; Haq, A.U.; Kriechbaumer, T.; Jacobsen, H.A. Whited-a worldwide household and industry transient energy data set. In Proceedings of the 3rd International Workshop on Non-Intrusive Load Monitoring, Vancouver, Canada, 14–15 May 2016; pp. 1–4. [Google Scholar]
- Picon, T.; Meziane, M.N.; Ravier, P.; Lamarque, G.; Novello, C.; Bunetel, J.C.L.; Raingeaud, Y. COOLL: Controlled on/off loads library, a public dataset of high-sampled electrical signals for appliance identification. arXiv 2016, arXiv:1611.05803. [Google Scholar]
- Renaux, D.; Linhares, R.; Pottker, F.; Lazzaretti, A.; Lima, C.; Neto, A.C.; Campaner, M. Designing a novel dataset for non-intrusive load monitoring. In Proceedings of the 2018 VIII Brazilian Symposium on Computing Systems Engineering, Salvador, Brazil, 5–8 November 2018; pp. 243–249. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomed. Signal Process. Control 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Plaza, E.G.; López, P.N. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech. Syst. Signal Process. 2018, 98, 902–919. [Google Scholar] [CrossRef]
- Islam, M.M.; Kim, J.M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network. Comput. Ind. 2019, 106, 142–153. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Jain, H.; Deb, K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 2014, 18, 602–622. [Google Scholar] [CrossRef]
- Bahaz, M.; Benzid, R. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series. Australas. Phys. Eng. Sci. Med. 2018, 41, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cai, M.; Wang, L.; Lu, Y. An ensemble model based on adaptive noise reducer and over-fitting prevention LSTM for multivariate time series forecasting. IEEE Access 2019, 7, 26102–26115. [Google Scholar] [CrossRef]
- Singhal, A.; Singh, P.; Fatimah, B.; Pachori, R.B. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomed. Signal Process. Control 2020, 57, 101741. [Google Scholar] [CrossRef]
- Anand, S.C.; Baldi, S. Optimal tracking strategies for uncertain ensembles of thermostatically controlled loads. In Proceedings of the 2020 IEEE 16th International Conference on Control & Automation, Singapore, 9–11 October 2020; pp. 901–906. [Google Scholar]
- Zou, S.; Chen, Z.; Lygeros, J. Price Control for Heterogeneous Thermostatically Controlled Loads in Communication and Computation Delay Environments. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control, Nice, France, 11–13 December 2019; pp. 4453–4458. [Google Scholar]
- Esposito, C.; Ficco, M.; Gupta, B.B. Blockchain-based authentication and authorization for smart city applications. Inf. Process Manag. 2021, 58, 102468. [Google Scholar] [CrossRef]
- Li, D.; Deng, L.; Gupta, B.B.; Wang, H.; Choi, C. A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. 2019, 479, 432–447. [Google Scholar] [CrossRef]
- Kumar, N.; Poonia, V.; Gupta, B.B.; Goyal, M.K. A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technol. Forecast. Soc. Chang. 2021, 165, 120532. [Google Scholar] [CrossRef]
Dataset | Country | Number of Classes | Data Duration | Sampling Rate (kHz) |
---|---|---|---|---|
REDD [23] | USA | 20 | Several months | 16.5 |
UK-DALE [24] | UK | 40 | Up to 2 years | 16 |
WHITED [25] | Germany, Austria, and Indonesia | 47 | 5 s | 44.1 |
COOLL [26] | France | 12 | 6 s | 100 |
LIT [27] | Brazil | 14 | 30 s to several hours | 15 |
Average Improvement in SNR (dB) | |||||||
---|---|---|---|---|---|---|---|
Destination | REDD | UK-DALE | WHITED (Germany) | WHITED (Austria) | WHITED (Indonesia) | COOLL | LIT |
REDD [23] | N/A | 10.6 | 11.2 | 11.9 | 10.8 | 7.8 | 8.2 |
UK-DALE [24] | 9.3 | N/A | 12.5 | 12.7 | 12.3 | 8.5 | 8.8 |
WHITED [25] (Germany) | 9.8 | 11.1 | N/A | 13.2 | 12.5 | 9.2 | 9.4 |
WHITED [25] (Austria) | 9.9 | 11.6 | 13.0 | N/A | 12.6 | 9.3 | 9.5 |
WHITED [25] (Indonesia) | 10.3 | 10.9 | 12.7 | 13.0 | N/A | 9.0 | 9.2 |
COOLL [26] | 8.4 | 8.9 | 10.4 | 10.5 | 10.2 | N/A | 7.8 |
LIT [27] | 8.7 | 9.2 | 10.6 | 10.8 | 10.5 | 8.1 | N/A |
Average Improvement in SNR (dB) | |||||||
---|---|---|---|---|---|---|---|
Destination | REDD | UK-DALE | WHITED (Germany) | WHITED (Austria) | WHITED (Indonesia) | COOLL | LIT |
REDD [23] | N/A | 6.9 | 7.8 | 8.3 | 7.6 | 5.3 | 5.7 |
UK-DALE [24] | 6.4 | N/A | 9.0 | 9.4 | 8.8 | 5.8 | 6.1 |
WHITED [25] (Germany) | 6.7 | 7.6 | N/A | 10.1 | 9.0 | 6.2 | 6.4 |
WHITED [25] (Austria) | 7.1 | 8.1 | 9.7 | N/A | 9.4 | 6.5 | 6.6 |
WHITED [25] (Indonesia) | 7.5 | 7.4 | 9.3 | 9.8 | N/A | 5.9 | 6.1 |
COOLL [26] | 5.7 | 6.1 | 6.8 | 7.0 | 6.6 | N/A | 5.4 |
LIT [27] | 6.0 | 6.3 | 7.2 | 7.5 | 6.9 | 5.6 | N/A |
Average Improvement in SNR (dB) | |||||||
---|---|---|---|---|---|---|---|
Destination | REDD | UK-DALE | WHITED (Germany) | WHITED (Austria) | WHITED (Indonesia) | COOLL | LIT |
REDD [23] | N/A | 5.3 | 6.5 | 6.9 | 6.2 | 4.0 | 4.4 |
UK-DALE [24] | 4.7 | N/A | 7.4 | 7.7 | 7.2 | 4.3 | 4.6 |
WHITED [25] (Germany) | 5.0 | 6.2 | N/A | 8.5 | 7.6 | 4.8 | 5.2 |
WHITED [25] (Austria) | 5.4 | 6.7 | 8.1 | N/A | 7.9 | 5.1 | 5.8 |
WHITED [25] (Indonesia) | 5.7 | 6.1 | 7.9 | 8.2 | N/A | 4.6 | 4.9 |
COOLL [26] | 4.2 | 4.9 | 5.4 | 5.6 | 5.2 | N/A | 4.3 |
LIT [27] | 4.5 | 5.1 | 5.7 | 5.9 | 5.6 | 4.2 | N/A |
Average Improvement in SNR (dB) | |||||||
---|---|---|---|---|---|---|---|
Destination | REDD | UK-DALE | WHITED (Germany) | WHITED (Austria) | WHITED (Indonesia) | COOLL | LIT |
REDD [23] | N/A | 4.9 | 6.0 | 6.3 | 5.8 | 3.8 | 4.2 |
UK-DALE [24] | 4.1 | N/A | 7.1 | 7.2 | 6.8 | 4.1 | 4.4 |
WHITED [25] (Germany) | 4.3 | 5.7 | N/A | 7.9 | 7.2 | 4.5 | 5.0 |
WHITED [25] (Austria) | 4.9 | 6.0 | 7.6 | N/A | 7.4 | 4.9 | 5.3 |
WHITED [25] (Indonesia) | 5.4 | 5.5 | 7.4 | 7.6 | N/A | 4.4 | 4.7 |
COOLL [26] | 3.9 | 4.6 | 5.1 | 5.3 | 4.9 | N/A | 4.1 |
LIT [27] | 4.2 | 4.8 | 5.4 | 5.6 | 5.3 | 4.1 | N/A |
Originating Dataset | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REDD | UK-DALE | WHITED (Germany) | WHITED (Austria) | WHITED (Indonesia) | COOLL | LIT | ||||||||
Destination Dataset | Improvement in SNR presenting in a format of | Proposed | [35] | |||||||||||
[36] | [37] | |||||||||||||
REDD [23] | N/A | N/A | 10.6 | 5.4 | 11.2 | 6.3 | 11.9 | 6.8 | 10.8 | 6.1 | 7.8 | 4.0 | 8.2 | 4.5 |
N/A | N/A | 5.7 | 7.4 | 7.0 | 8.4 | 7.4 | 9.0 | 6.7 | 8.3 | 4.5 | 6.0 | 4.9 | 6.3 | |
UK-DALE [24] | 9.3 | 4.2 | N/A | N/A | 12.5 | 7.5 | 12.7 | 8.0 | 12.3 | 7.3 | 8.5 | 4.2 | 8.8 | 4.7 |
5.5 | 7.0 | N/A | N/A | 8.1 | 9.9 | 8.3 | 10.2 | 7.6 | 9.4 | 4.7 | 6.6 | 5.3 | 6.9 | |
WHITED [25] (Germany) | 9.8 | 4.5 | 11.1 | 6.1 | N/A | N/A | 13.2 | 8.4 | 12.5 | 7.6 | 9.2 | 4.7 | 9.4 | 5.2 |
5.9 | 7.5 | 6.7 | 8.2 | N/A | N/A | 9.0 | 11.0 | 8.2 | 9.6 | 5.4 | 6.8 | 5.7 | 7.2 | |
WHITED [25] (Austria) | 9.9 | 5.2 | 11.6 | 6.5 | 13.0 | 8.0 | N/A | N/A | 12.6 | 7.8 | 9.3 | 5.1 | 9.5 | 5.7 |
6.3 | 7.9 | 7.4 | 8.8 | 8.8 | 10.6 | N/A | N/A | 8.6 | 10.2 | 5.8 | 7.5 | 6.2 | 7.5 | |
WHITED [25] (Indonesia) | 10.3 | 5.6 | 10.9 | 5.9 | 12.7 | 7.6 | 13.0 | 7.9 | N/A | N/A | 9.0 | 4.6 | 9.2 | 5.0 |
6.6 | 8.2 | 6.5 | 7.9 | 8.5 | 10.2 | 8.8 | 10.6 | N/A | N/A | 5.3 | 6.5 | 5.4 | 6.8 | |
COOLL [26] | 8.4 | 4.0 | 8.9 | 4.9 | 10.4 | 5.5 | 10.5 | 5.9 | 10.2 | 5.3 | N/A | N/A | 7.8 | 4.8 |
4.9 | 6.3 | 5.5 | 6.5 | 6.0 | 7.5 | 6.1 | 7.8 | 5.5 | 7.1 | N/A | N/A | 4.7 | 6.1 | |
LIT [27] | 8.7 | 4.5 | 9.2 | 5.2 | 10.6 | 5.9 | 10.8 | 6.2 | 10.5 | 5.5 | 8.1 | 4.4 | N/A | N/A |
5.5 | 6.7 | 5.8 | 6.9 | 6.2 | 8.0 | 6.4 | 8.2 | 6.0 | 7.5 | 5.0 | 6.3 | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chui, K.T.; Gupta, B.B.; Liu, R.W.; Vasant, P. Handling Data Heterogeneity in Electricity Load Disaggregation via Optimized Complete Ensemble Empirical Mode Decomposition and Wavelet Packet Transform. Sensors 2021, 21, 3133. https://doi.org/10.3390/s21093133
Chui KT, Gupta BB, Liu RW, Vasant P. Handling Data Heterogeneity in Electricity Load Disaggregation via Optimized Complete Ensemble Empirical Mode Decomposition and Wavelet Packet Transform. Sensors. 2021; 21(9):3133. https://doi.org/10.3390/s21093133
Chicago/Turabian StyleChui, Kwok Tai, Brij B. Gupta, Ryan Wen Liu, and Pandian Vasant. 2021. "Handling Data Heterogeneity in Electricity Load Disaggregation via Optimized Complete Ensemble Empirical Mode Decomposition and Wavelet Packet Transform" Sensors 21, no. 9: 3133. https://doi.org/10.3390/s21093133
APA StyleChui, K. T., Gupta, B. B., Liu, R. W., & Vasant, P. (2021). Handling Data Heterogeneity in Electricity Load Disaggregation via Optimized Complete Ensemble Empirical Mode Decomposition and Wavelet Packet Transform. Sensors, 21(9), 3133. https://doi.org/10.3390/s21093133