Identification of Cotton Leaf Lesions Using Deep Learning Techniques
Abstract
:1. Introduction
2. Materials and Methods
- (I)
- Acquisition: Capture of cotton leaf images under natural field conditions, considering different phenological stages and different harvests.
- (II)
- Pre-processing: Selection of images, removal of outliers and grouping by specialists into the respective classes
- (III)
- Extraction of attributes: Extraction of the set of features of interest based on the statistical attributes of texture utilized by Pydipati et al. [34] and Bhimte et al. [35]. The set includes measures such as average level of grey, standard deviation, correlation, third moment, uniformity, and entropy. The equations for the statistical attributes of texture are presented in Table 1.
- (IV)
Convolutional Neural Networks
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunne, R.; Desai, D.; Sadiku, R.; Jayaramudu, J. A review of natural fibers, their sustainability and automotive applications. J. Reinf. Plast. Compos. 2016, 35, 1041–1050. [Google Scholar] [CrossRef]
- Mortuza, G.G. Quality Cotton Production for Economic development of Bangladesh. Reflactor 2015, 4, 37–72. [Google Scholar]
- CONAB. Série Histórica: Algodão. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/item/download/35361_786802c6870cf9b507394bc5a9bd3c3d (accessed on 23 December 2020).
- Silva, J.; Bettiol, W.; Suassuna, N. Ramularia leaf spot: An emergent disease of cotton in Brazil. Trop. Plant Pathol. 2019, 44, 473–482. [Google Scholar] [CrossRef]
- Gilio, T.A.S.; De Araújo, D.; Araújo, K.L.; Fregonese, T.E.; Franzon, R.C.; Pizzato, J.A. Estimated damage caused by ramularia leaf spots on cotton. Afr. J. Agric. Res. 2017, 12, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.N.; Tariq, M.; Ahmed, M.; Abbas, G.; Mehmood, Z. Managing Planting Time for Cotton Production; Ahmad, S., Hasanuzzaman, M., Eds.; Cotton Production and Uses; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Santos, W.J. Manejo das pragas do algodão, com destaque para o cerrado brasileiro. In Algodão no Cerrado do Brasil, 3rd ed.; Freire, E.C., Ed.; Associação Brasileira dos Produtores de Algodão: Brasília, Brazil, 2015; pp. 267–364. ISBN 978-85-61960-04-9. [Google Scholar]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Cilas, C.; Goebel, F.R.; Babin, R.; Avelino, J. Tropical Crop Pests and Diseases in a Climate Change Setting—A Few Examples. In Climate Change and Agriculture Worldwide; Torquebiau, E., Ed.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Tormen, N.R.; Blum, L.E.B. Mancha de Ramulária Afeta a Produtividade e Qualidade da Fibra em Algodoeiro Submetido à Aplicação de Fungicidas. Rev. Caatinga 2019, 32, 634–646. [Google Scholar] [CrossRef]
- Ghini, R.; Bettiol, W. Proteção de plantas na agricultura sustentável. Cad. Ciência Tecnol. 2000, 17, 61–70. [Google Scholar] [CrossRef]
- Reis, E.M.; Casa, R.T.; Bianchin, V. Controle de doenças de plantas pela rotação de culturas. Summa Phytopathol. 2011, 37, 85–91. [Google Scholar] [CrossRef] [Green Version]
- IMEA. Custo de Produção: Algodão/Mato Grosso. Available online: http://www.imea.com.br/imea-site/relatorios-mercado-detalhe?c=1&s=3 (accessed on 23 December 2020).
- Huang, J.; Zeng, M.; Li, W.; Meng, X. Application of Data Augmentation and Migration Learning in Identification of Diseases and Pests in Tea Trees. 2019 ASABE Annual International Meeting. Am. Soc. Agric. Biol. Eng. 2019. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Ghaffar, A.; Ur Rahman, M.H.; Ali, H.R.; Haider, G.; Ahmad, S.; Fahad, S.; Ahmad, S. Modern concepts and techniques for better cotton production. In Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Springer: Singapore, 2020; pp. 589–628. [Google Scholar] [CrossRef]
- Yang, C.; Odvody, G.; Thomasson, J.; Isakeit, T.; Minzenmayer, R.; Drake, D.; Nichols, R. Site-Specific Management of Cotton Root Rot Using Airborne and High-Resolution Satellite Imagery and Variable-Rate Technology. Trans. ASABE 2018, 61, 849–858. [Google Scholar] [CrossRef]
- Machado, J.; Padilha, M.; De, F.R.; Lira, F.P.; De Oliveira, J.G.; Silva, R.S.; Caetano, M.B.C. Precision agriculture and opening new frontiers in Brazil. Rev. Geama 2018, 4, 49–53. [Google Scholar]
- Song, X.; Yang, C.; Wu, M.; Zhao, C.; Guijun, Y.; Hoffmann, C.; Huang, W. Evaluation of Sentinel-2A Satellite Imagery for Mapping Cotton Root Rot. Remote Sens. 2017, 9, 906. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Thomasson, J.A.; Yang, C.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sens. 2020, 12, 1310. [Google Scholar] [CrossRef] [Green Version]
- Berger, G.; Lima, T.C.; Oliveira, R. Algodão no Cerrado: Logística e operações práticas. In Planejamento Agrícola à Aplicação de Reguladores de Crescimento, 1st ed.; CEAD: Viçosa, Brazil, 2019; Volume 1, ISSN 2179-1732. [Google Scholar]
- Barbedo, J.G.A.; Koenigkan, L.V.; Halfeld-Vieira, B.A.; Costa, R.V.; Nechet, K.L.; Godoy, C.V.; Junior, M.L.; Patricio, F.R.A.; Talamini, V.; Chitarra, L.G.; et al. Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases. IEEE Latin Am. Trans. 2018, 16, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Camargo, A.; Smith, J.S. Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agric. 2009, 66, 121–125. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 2017, 134, 135–141. [Google Scholar] [CrossRef]
- Revathi, P.; Hemalatha, M. Identification of Cotton Diseases Based on Cross Information Gain_Deep Forward Neural Network Classifier with PSO Feature Selection. Int. J. Eng. Technol. 2014, 5, 4637–4642. [Google Scholar]
- Abade, A.; Ferreira, P.; Vidal, F. Plant Diseases recognition on images using Convolutional Neural Networks: A Systematic Review. arXiv 2020, arXiv:2009.04365. [Google Scholar]
- Brandão, Z.; Sofiatti, V.; Bezerra, J.; Ferreira, G. Spectral reflectance for growth and yield assessment of irrigated cotton. Aust. J. Crop Sci. 2015, 9, 75–84. [Google Scholar]
- Yang, C.; Odvody, G.N.; Fernandez, C.J.; Landivar, J.A.; Minzenmayer, R.R.; Nichols, R.L. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot. Precis. Agric. 2015, 16, 201–215. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 2019, 180, 96–107. [Google Scholar] [CrossRef]
- Deeba, K.; Amutha, B. ResNet-deep neural network architecture for leaf disease classification. Microprocess. Microsyst. 2020. [Google Scholar] [CrossRef]
- Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P.L. Convolutional Neural Networks for the Automatic Identification of Plant Diseases. Front. Plant Sci. 2019, 10, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, R.C.; Woods, R.E. Processamento Digital de Imagens, 3rd ed.; Pearson: São Paulo, Brazil, 2010; ISBN 9788576054016. [Google Scholar]
- Pydipati, R.; Burks, T.F.; Lee, W.S. Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric. 2006, 52, 49–59. [Google Scholar] [CrossRef]
- Bhimte, N.R.; Thool, R. Diseases Detection of Cotton Leaf Spot using Image Processing and SVM Classifier. In Proceedings of the Second International Conference on Intelligent Computing and Control Systems (ICICCS 2018), Madurai, India, 14–15 June 2018; pp. 340–344. [Google Scholar] [CrossRef]
- Haghverdi, A.; Washington-Allen, R.A.; Leib, B.G. Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Comput. Electron. Agric. 2018, 152, 186–197. [Google Scholar] [CrossRef]
- Cetişli, B. Development of an adaptive neuro-fuzzy classifier using linguistic hedges: Part 1. Expert Sys. Appl. 2010, 37, 6093–6101. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Nosseir, A.; Ahmed, S.E.A. Automatic Identification and Classifications for Fruits Using k-NN. In Proceedings of the 7th International Conference on Software and Information Engineering (ICSIE ’18), Cairo, Egypt, 2–4 May 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 62–67. [Google Scholar] [CrossRef]
- Lecun, Y.; Boser, B.E.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.E.; Jackel, L.D. Handwritten Digit Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems; Touretzky, D.S., Ed.; Morgan-Kaufmann: Burlington, MA, USA, 1990; pp. 396–404. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Grinblat, G.L.; Uzal, L.C.; Larese, M.G.; Granitto, M. Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 2016. 127, 418–424. [CrossRef] [Green Version]
- Lecun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 253–256. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Ososkov, G.; Goncharov, P. Shallow and deep learning for image classification. Opt. Mem. Neural Netw. 2017, 26, 221–248. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [Green Version]
- Batuwita, R.; Palade, V. Efficient resampling methods for training support vector machines with imbalanced datasets. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision Recall and F-Score, with Implication for Evaluation. In European Conference on Information Retrieval; Losada, D.E., Fernández-Luna, J.M., Eds.; ECIR 2005. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3408. [Google Scholar] [CrossRef]
- Nazarenko, D.; Kharyuk, V.; Oseledets, I.; Rodin, I.A.; Shpigun, O.A. Machine learning for LC–MS medicinal plants identification. Chemom. Intell. Lab. Syst. 2016, 156, 174–180. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions. Precis. Agric. 2017, 18, 859–881. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, Z.; Khot, L.; Meng, X.; Zhang, Q. A Real-Time Weed Mapping and Precision Herbicide Spraying System for Row Crops. Sensors 2018, 18, 4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture. In Proceedings of the 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 273–280. [Google Scholar] [CrossRef]
- Altaher, A. An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features. Neural Comput. Appl. 2017, 28, 4147–4157. [Google Scholar] [CrossRef]
- Belaout, A.; Krim, F.; Mellit, A.; Talbi, B.; Arabi, A. Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renew. Energy 2018, 127, 548–558. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.; Rumpf, T.; Römer, C.; Plümer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Masood, R.; Khan, S.A.; Khan, M.N.A. Plants Disease Segmentation using Image Processing. Mod. Educ. Comput. Sci. 2016, 1, 24–32. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput dtress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Ma, Y.; Gao, G. An intelligent precision orchard pesticide spray technique based on the depth-of-field extraction algorithm. Comput. Electron. Agric. 2017, 133, 30–36. [Google Scholar] [CrossRef]
- Lopes, L.O.; Lacerda, J.J.D.J.; Mielezrski, F.; Ratke, R.F.; Lira, D.N.D.S.; Pacheco, L.P. Efeito de fungicidas para o controle da Famularia aréola na cultura do algodoeiro. Summa Phytopathol. 2017, 43, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Ramyachitra, D.; Manikandan, P. Imbalanced Dataset Classification and Solutions: A Review. Int. J. Comput. Bus. Res. 2014, 5, 1–29. [Google Scholar]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Cha, K.H.; Petrick, N.A.; Pezeshk, A.X.; Graff, C.G.; Sharma, D.; Badal, A.; Sahiner, B. Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning. J. Med. Imaging 2019, 7, 012703. [Google Scholar] [CrossRef]
- Nguyen, S.; Niu, G.; Quinn, J.; Olinsky, A.; Ormsbee, J.; Smith, R.; Bishop, J. Detecting Non-injured Passengers and Drivers in Car Accidents: A New Under-resampling Method for Imbalanced Classification. Adv. Bus. Manag. Forecast. 2019, 13, 93–105. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Qin, H.; Hao, A. Deep variance network: An iterative, improved CNN framework for unbalanced training datasets. Pattern Recognit. 2018, 81, 294–308. [Google Scholar] [CrossRef]
- Geetharamani, G.; Arun, J. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar]
- Zhang, M.; Meng, Q. Automatic citrus canker detection from leaf images captured in field. Pattern Recognit. Lett. 2011, 32, 2036–2046. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Chen, L.; Shen, C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis. Measurement 2016, 93, 490–502. [Google Scholar] [CrossRef]
- Kruse, O.M.O.; Prats-Montalbán, J.M.; Indahl, U.G.; Kvaal, K.; Ferrer, A.; Futsaether, C.M. Pixel classification methods for identifying and quantifying leaf surface injury from digital images. Comput. Electron. Agric. 2014, 108, 155–165. [Google Scholar] [CrossRef]
- Pires, R.D.L.; Gonçalves, D.N.; Oruê, J.P.M.; Kanashiro, W.E.S.; Rodrigues Jr, J.F.; Machado, B.B.; Gonçalves, W.N. Local descriptors for soybean disease recognition. Comput. Electron. Agric. 2016, 125, 48–55. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Tamouridou, A.A. Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104. [Google Scholar] [CrossRef]
- Mettes, P.; Van Gemert, J.C.; Snoek, C.G.M. No spare parts: Sharing part detectors for image categorization. Comput. Vis. Image Underst. 2016, 152, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 2012, 32, 323–332. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Description | Equation |
---|---|---|
I1 | Average | |
I2 | Standard deviation | |
I3 | Smoothness | |
I4 | Third moment | |
I5 | Uniformity | |
I6 | Entropy |
Performance Metric | Equation |
---|---|
Sensitivity (Recall) | TP/(TP + FN) |
Specificity | TN/(TN + FP) |
Overall Accuracy | (TP + TN)/(TP + FP + TN + FN) |
Precision | TP/(TP + FP) |
F-Score | (2 × Precision × Recall)/(Precision + Recall) |
Algorithm | Overall Accuracy |
---|---|
SVM | 80.30% |
NFC | 71.10% |
RNA | 76.60% |
KNN | 78.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldeira, R.F.; Santiago, W.E.; Teruel, B. Identification of Cotton Leaf Lesions Using Deep Learning Techniques. Sensors 2021, 21, 3169. https://doi.org/10.3390/s21093169
Caldeira RF, Santiago WE, Teruel B. Identification of Cotton Leaf Lesions Using Deep Learning Techniques. Sensors. 2021; 21(9):3169. https://doi.org/10.3390/s21093169
Chicago/Turabian StyleCaldeira, Rafael Faria, Wesley Esdras Santiago, and Barbara Teruel. 2021. "Identification of Cotton Leaf Lesions Using Deep Learning Techniques" Sensors 21, no. 9: 3169. https://doi.org/10.3390/s21093169
APA StyleCaldeira, R. F., Santiago, W. E., & Teruel, B. (2021). Identification of Cotton Leaf Lesions Using Deep Learning Techniques. Sensors, 21(9), 3169. https://doi.org/10.3390/s21093169