Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China
Abstract
:1. Introduction
2. Typical Observation Cases
3. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ding, F.; Wan, W.X.; Ning, B.Q.; Zhao, B.Q.; Li, Q.; Zhang, R.; Xiong, B.; Song, Q. Two-dimensional imaging of large-scale traveling ionospheric disturbances over China based on GPS data. J. Geophys. Res. Space Phys. 2012, 117, A08318. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Hunsucker, R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys. Space Phys. 1982, 20, 293–315. [Google Scholar] [CrossRef]
- Lei, J.H.; Burns, A.G.; Tsugawa, T.; Wang, W.B.; Solomon, S.C.; Wiltberger, M. Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm. J. Geophys. Res. Space Phys. 2008, 113, A06310. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Ding, F.; Wan, W.X.; Ning, B.Q.; Liu, L.B.; Zhao, B.Q.; Li, Q.; Zhang, R. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J. Geophys. Res. Space Phys. 2013, 118, 4583–4593. [Google Scholar] [CrossRef]
- Fujiwara, H.; Miyoshi, Y. Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys. Res. Lett. 2006, 33, L20108. [Google Scholar] [CrossRef]
- Figueiredo, C.A.O.B.; Wrasse, C.M.; Takahashi, H.; Otsuka, Y.; Shiokawa, K.; Barros, D. Large-scale traveling ionospheric disturbances observed by GPS dTEC maps over North and South America on Saint Patrick’s Day storm in 2015. J. Geophys. Res. Space Phys. 2017, 122, 4755–4763. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Large-scale traveling ionospheric disturbances impacting equatorial ionization anomaly development in the local morning hours of the Halloween Superstorms on 29–30 October 2003. J. Geophys. Res. Space Phys. 2010, 115, A04302. [Google Scholar] [CrossRef] [Green Version]
- Idrus, I.I.; Abdullah, M.; Hasbi, A.M.; Husin, A.; Yatim, B. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions. J. Atmos. Sol.-Terr. Phys. 2013, 102, 321–328. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y.; Yamamoto, M. Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J. Geophys. Res. 2003, 108, 1127. [Google Scholar] [CrossRef]
- Tsugawa, T.; Saito, A.; Otsuka, Y. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J. Geophys. Res. 2004, 109, A06302. [Google Scholar] [CrossRef]
- Borries, C.; Jakowski, N.; Kauristie, K.; Amm, O.; Mielich, J.; Kouba, D. On the dynamics of large-scale traveling ionospheric disturbances over Europe on 20 November 2003. J. Geophys. Res. Space Phys. 2017, 122, 1199–1211. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Wan, W.X.; Liu, L.B.; Afraimovich, E.L.; Voeykov, S.V.; Perevalova, N.P. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. J. Geophys. Res. Space Phys. 2008, 113, A00A01. [Google Scholar] [CrossRef]
- Hajkowicz, L.A. A global study of large scale travelling ionospheric disturbances (TIDS) following a step-like onset of auroral substorms in both hemispheres. Planet. Space Sci. 1990, 38, 913–923. [Google Scholar] [CrossRef]
- Hajkowicz, L.A. Global onset and propagation of large scale travelling ionospheric disturbances as a result of the great storm of 13 March 1989. Planet. Space Sci. 1991, 39, 583–593. [Google Scholar] [CrossRef]
- Maeda, S.; Handa, S. Transmission of large-scale TIDs in the ionospheric F2-region. J. Atmos. Terr. Phys. 1980, 42, 853–859. [Google Scholar] [CrossRef]
- Nicolls, M.J.; Kelley, M.C. Strong evidence for gravity wave seeding of an ionospheric plasma instability. Geophys. Res. Lett. 2005, 32, L05108. [Google Scholar] [CrossRef]
- Panasenko, S.V.; Goncharenko, L.P.; Erickson, P.J.; Aksonova, K.D.; Domnin, I.F. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. 2018, 172, 10–23. [Google Scholar] [CrossRef]
- Sheen, D.R.; Liu, C.H. Modeling F region gravity waves observed during the WAGS campaign: 1. Special event. Radio Sci. 1988, 23, 879–893. [Google Scholar] [CrossRef]
- Vadas, S.L.; Nicolls, M.J. Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves. J. Atmos. Sol.-Terr. Phys. 2009, 71, 744–770. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Carlos, R.C.; Massey, R.S.; Wu, G.H. Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior. J. Geophys. Res. 1995, 100, 1653–1665. [Google Scholar] [CrossRef]
- Georges, T.M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. Terr. Phys. 1968, 30, 735–746. [Google Scholar] [CrossRef]
- Mendillo, M.; Baumgardner, J.; Nottingham, D.; Aarons, J.; Reinisch, B.; Scali, J.; Kelley, M. Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo Observatory. J. Geophys. Res. Space Phys. 1997, 102, 7331–7343. [Google Scholar] [CrossRef] [Green Version]
- Shiokawa, K. Thermospheric wind during a storm-time large-scale traveling ionospheric disturbance. J. Geophys. Res. 2003, 108, 1423. [Google Scholar] [CrossRef] [Green Version]
- Shiokawa, K. Geomagnetic conjugate observation of nighttime medium-scale and large-scale traveling ionospheric disturbances: FRONT3 campaign. J. Geophys. Res. 2005, 110, A05303. [Google Scholar] [CrossRef]
- Huang, X.Q.; Reinisch, B.W. Vertical electron density profiles from the Digisonde network. Adv. Space Res. 1996, 18, 121–129. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Z.Y.; Zhu, G.Q.; Shi, S.Z. The Wuhan Ionospheric Sounding Systems. IEEE Geosci. Remote Sens. Lett. 2009, 6, 748–751. [Google Scholar] [CrossRef]
- Huang, X.Q.; Reinisch, B.W.; Kuklinski, W.S. Mid-point electron density profiles from oblique ionograms. Ann. Geophys. 1996, 39, 757–761. [Google Scholar] [CrossRef]
- Reilly, M.H.; Kolesar, J.D. A method for real height analysis of oblique ionograms. Radio Sci. 1989, 24, 575–583. [Google Scholar] [CrossRef]
- Phanivong, B.; Chen, J.; Dyson, P.L.; Bennett, J.A. Inversion of oblique ionograms including the Earth’s magnetic field. J. Atmos. Terr. Phys. 1995, 57, 1715–1721. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Z.Y.; Zhang, Y.N.; Yang, G.B.; Zhou, C.; Huang, S.; Li, T.; Li, N.; Sun, H.Q. Application of the oblique ionogram as vertical ionogram. Sci. China Technol. Sci. 2012, 55, 1240–1244. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Zhang, S.D.; Deng, Z.X.; Zhong, D.K.; Wu, C.; Jin, H.; Li, Y.X. Opposite latitudinal dependence of the premidnight and postmidnight oscillations in the electron density of midlatitude F layer. J. Geophys. Res. Space Phys. 2018, 123, 796–807. [Google Scholar] [CrossRef]
- Hines, C.O. Gravity waves in the atmosphere. Nature 1972, 239, 73–78. [Google Scholar] [CrossRef]
- Chen, G.; Wu, C.; Zhao, Z.Y.; Zhong, D.K.; Qi, H.; Jin, H. Daytime E region field-aligned irregularities observed during a solar eclipse. J. Geophys. Res. Space Phys. 2014, 119, 10633–10640. [Google Scholar] [CrossRef]
- Chen, G.; Wang, J.; Wu, C.; Huang, X.Q.; Zhong, D.K.; Qi, H.; Huang, L.; Li, Y.X. Multisite Remote Sensing for Tsunami-Induced Waves. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7177–7184. [Google Scholar] [CrossRef]
- Tang, Q.L.; Wan, W.X.; Ning, B.Q.; Yuan, H. Properties of large-scale TIDs observed in central China. Sci. China Ser. A Math. 2002, 45, 156–160. [Google Scholar] [CrossRef]
- Otsuka, Y.; Suzuki, K.; Nakagawa, S.; Nishioka, M.; Shiokawa, K.; Tsugawa, T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, 31, 163–172. [Google Scholar] [CrossRef]
- Jin, S.G.; Jin, R.; Li, J.H. Pattern and evolution of seismo-ionospheric disturbances following the 2011 Tohoku earthquakes from GPS observations. J. Geophys. Res. Space Phys. 2014, 119, 7914–7927. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F.; Chen, C.H.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. 2011, 116, A06319. [Google Scholar] [CrossRef]
- Xu, J.Y.; Li, Q.Z.; Yue, J.; Hoffmann, L.; Straka, W.C.; Wang, C.M.; Liu, M.H.; Yuan, W.; Han, S.; Miller, S.D.; et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites. J. Geophys. Res. Atmos. 2015, 120, 11058–11078. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Wan, W.; Ning, B.; Wang, M. Large-scale traveling ionospheric disturbances observed by GPS total electron content during the magnetic storm of 29–30 October 2003. J. Geophys. Res. Space Phys. 2007, 112, A06309. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Ning, B.; Zhao, B.; Li, Q.; Wang, Y.; Hu, L.; Zhang, R.; Xiong, B. Observations of poleward-propagating large-scale traveling ionospheric disturbances in southern China. Ann. Geophys. 2013, 31, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Zakharenkova, I.; Astafyeva, E.; Cherniak, I. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2016, 121, 12138–12156. [Google Scholar] [CrossRef]
- Katamzi, Z.T.; Smith, N.D.; Mitchell, C.N.; Spalla, P.; Materassi, M. Statistical analysis of travelling ionospheric disturbances using TEC observations from geostationary satellites. J. Atmos. Sol.-Terr. Phys. 2012, 74, 64–80. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.X.; Li, Q.; Zhang, R.; Song, Q.; Ning, B.Q.; Liu, L.B.; Zhao, B.Q.; Xiong, B. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011–2012. J. Geophys. Res. Space Phys. 2014, 119, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Millward, G.H.; Moffett, R.J.; Quegan, S.; Fuller-Rowell, T.J. Effects of an atmospheric gravity wave on the midlatitude ionospheric F layer. J. Geophys. Res. Space Phys. 1993, 98, 19173–19179. [Google Scholar] [CrossRef]
- Medeiros, A.F.; Taylor, M.J.; Takahashi, H.; Batista, P.P.; Gobbi, D. An investigation of gravity wave activity in the low-latitude upper mesosphere: Propagation direction and wind filtering. J. Geophys. Res. 2003, 108, 4411. [Google Scholar] [CrossRef] [Green Version]
- Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T.S.; Ejiri, M.K.; Nakamura, T.; Yamamoto, M. Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan. J. Geophys. Res. Space Phys. 2017, 122, 8770–8780. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Fujiwara, H.; Jin, H.; Shinagawa, H. A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res. Space Phys. 2014, 119, 5807–5820. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Lindzen, R.S. Thermally driven diurnal tide in the atmosphere. Q. J. R. Meteorol. Soc. 1967, 93, 18–42. [Google Scholar] [CrossRef]
- Lindzen, R.S. Lower atmospheric energy sources for the upper atmosphere. In Meteorological Monographs, Meteorological Investigations of the Upper Atmosphere; American Meteorological Society: Boston, MA, USA, 1968; pp. 37–46. [Google Scholar] [CrossRef]
- Hodges, R.R., Jr. Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res. 1967, 72, 3455–3458. [Google Scholar] [CrossRef]
- Hodges, R.R., Jr. Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res. 1969, 74, 4087–4090. [Google Scholar] [CrossRef]
- Pitteway, M.L.V.; Hines, C.O. The viscous damping of atmospheric gravity waves. Can. J. Phys. 1963, 41, 1935–1948. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Yuan, H. The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. Sol.-Terr. Phys. 2003, 65, 857–869. [Google Scholar] [CrossRef]
- Yeh, K.C.; Webb, H.D.; Cowling, D.H. Evidence of directional filtering of travelling ionospheric disturbance. Nat. Phys. Sci. 1972, 235, 131–132. [Google Scholar] [CrossRef]
- Kotake, N.; Otsuka, Y.; Ogawa, T.; Tsugawa, T.; Saito, A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space 2007, 59, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan. Earth Planets Space 2021, 73, 22. [Google Scholar] [CrossRef]
Season | Autumn | Winter | Spring | Summer |
---|---|---|---|---|
Number of events | 29 | 110 | 16 | 2 |
Occurrence rate | 27.0% | 56.7% | 16.3% | 1.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Chen, G.; Li, Y.; Zhang, S.; Gong, W.; He, Z.; Zhang, M. Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China. Sensors 2022, 22, 233. https://doi.org/10.3390/s22010233
Zhang R, Chen G, Li Y, Zhang S, Gong W, He Z, Zhang M. Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China. Sensors. 2022; 22(1):233. https://doi.org/10.3390/s22010233
Chicago/Turabian StyleZhang, Ruijiao, Gang Chen, Yaxian Li, Shaodong Zhang, Wanlin Gong, Zhiqiu He, and Min Zhang. 2022. "Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China" Sensors 22, no. 1: 233. https://doi.org/10.3390/s22010233
APA StyleZhang, R., Chen, G., Li, Y., Zhang, S., Gong, W., He, Z., & Zhang, M. (2022). Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China. Sensors, 22(1), 233. https://doi.org/10.3390/s22010233