Application of Wigner Distribution Function for THz Propagation Analysis
Abstract
:1. Introduction
1.1. Review of Simulation Methods
1.2. Purpose
2. Wigner Methodology
3. Results
3.1. Previous Investigations on EM-Field Distribution on the Aperture
3.1.1. Previous Investigations of the THz Radiation
3.1.2. FEL Simulations
3.2. WDF Simulations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalzell, D.R.; Mcquade, J.; Vincelette, R.; Ibey, B.; Payne, J.; Roach, W.P.; Roth, C.L.; Wilmink, G.J. Damage thresholds for terahertz radiation. SPIE Proc. 2014. [Google Scholar] [CrossRef]
- Siegel, P.H. Terahertz Technology in Biology and Medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2447. [Google Scholar] [CrossRef]
- Chamberlain, M.; Jones, B.; Wilke, I.; Williams, G.; Parks, B.; Heinz, T.; Siegel, P. Opportunities in THz Science. Science 2004, 80, 123. [Google Scholar]
- Tripathi, S.R.; Miyata, E.; Ben Ishai, P.; Kawase, K. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region. Sci. Rep. 2015, 5, 9071. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, C.; Zhang, H. Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J. Opt. Soc. Am. B 2020, 37, 2678. [Google Scholar] [CrossRef]
- Friedman, A.; Balal, N.; Bratman, V.; Dyunin, E.; Lurie, Y.; Magory, E.; Gover, A.; Aviv, T. Configuration And Status Of The Israeli Thz Free Electron Laser *. In Proceedings of the 36th International Free Electron Laser Conference, Basel, Switzerland, 25–29 August 2014; ISBN 978-3-95450-133-5. [Google Scholar]
- Alonso, M.A. Wigner functions in optics: Describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photonics 2011, 3, 272. [Google Scholar] [CrossRef]
- Gerasimov, J.; Balal, N.; Liokumovitch, E.; Richter, Y.; Gerasimov, M.; Bamani, E.; Pinhasi, G.A.; Pinhasi, Y. Scaled modeling and measurement for studying radio wave propagation in tunnels. Electronics 2021, 10, 53. [Google Scholar] [CrossRef]
- Koutitas, G.; Siddaraju, V.K.; Metsis, V. In situ wireless channel visualization using augmented reality and ray tracing. Sensors 2020, 20, 690. [Google Scholar] [CrossRef] [Green Version]
- Piekarczyk, M.; Andersen, T.; Budnev, N.M.; Alvarez-castillo, D.E. CNN-Based Classifier as an Offline Trigger for the CREDO Experiment. Sensors 2021, 21, 4804. [Google Scholar] [CrossRef]
- De Raedt, H.; Michielsen, K.; Kole, J.S.; Figge, M.T. Solving the Maxwell Equations by the Chebyshev Method: A One-Step Finite-Difference Time-Domain Algorithm. IEEE Trans. Antennas Propag. 2003, 51, 3155–3160. [Google Scholar] [CrossRef]
- Lurie, Y.; Friedman, A.; Pinhasi, Y. Single pass, THz spectral range free-electron laser driven by a photocathode hybrid rf linear accelerator. Phys. Rev. Spéc. Top. Accel. Beams 2015, 18, 070701. [Google Scholar] [CrossRef]
- Sumithra, P.; Thiripurasundari, D. A review on Computational Electromagnetics Methods. Adv. Electromagn. 2017, 6, 42–55. [Google Scholar] [CrossRef]
- Antoine, X.; Dreyfuss, P.; Ramdani, K. A Construction of Beam Propagation Methods for Optical Waveguides 1 Introduction. Commun. Comput. Phys. 2009, 6, 565–576. [Google Scholar]
- Sheppard, C. The Green-function transform and wave propagation. Front. Phys. 2014, 2, 67. [Google Scholar] [CrossRef] [Green Version]
- Riesen, N.; Love, J.D.; Arkwright, J.W. Few-Mode Elliptical-Core Fiber Data Transmission. IEEE Photon Technol. Lett. 2012, 24, 344–346. [Google Scholar] [CrossRef]
- Belger, M.; Schimming, R.; Wünsch, V. A Survey on Huygens’ Principle. Z. Anal. Ihre Anwend. 1997, 16, 9–36. [Google Scholar] [CrossRef] [Green Version]
- Bevan, B.; Baker, E.T. Copson. The Mathematical Theory of Huygens’ Principle. Nature 1940, 145, 531–532. [Google Scholar]
- Siegman, A.E. Hermite-Gaussian function of complex argument as optical-beam eigenfunctions. OSA 1973, 63, 1093–1094. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, J.; O’Sullivan, C. Beam shaping using Gaussian beam modes. J. Opt. Soc. Am. A 2010, 27, 350. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, C.; Murphy, J.A.; Gradziel, M.L.; Lavelle, J.; Peacocke, T.; Trappe, N.; Curran, G.S.; White, D.R.; Withington, S. Optical modelling using Gaussian beam modes for the terahertz band. Terahertz Technol. Appl. II 2009, 7215, 72150P. [Google Scholar] [CrossRef] [Green Version]
- Niles, S.P.; Blau, J.; Colson, W.B. Hermite-Gaussian decomposition of free electron laser optical fields. Phys. Rev. Spec. Top. Accel. Beams 2010, 13, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bastiaans, M.J. The Wigner distribution function applied to optical signals and systems. Opt. Commun. 1978, 25, 26–30. [Google Scholar] [CrossRef]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Shabtay, G.; Mendlovic, D.; Zalevsky, Z. of the Wigner distribution function. Appl. Opt. 1998, 37, 2–4. [Google Scholar] [CrossRef]
- Tanner, G.; Madenoor Ramapriya, D.; Gradoni, G.; Creagh, S.C.; Moers, E.; Lopéz Arteaga, I. A Wigner function approach to near-field acoustic holography—Theory and experiments. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; InterNoise19: Madrid, Spain, 2019. [Google Scholar]
- Dragoman, D. Applications of the Wigner distribution function in signal processing. EURASIP J. Appl. Signal. Process. 2005, 2005, 1520–1534. [Google Scholar] [CrossRef] [Green Version]
- Orović, I.; Stanković, S.; Draganić, A. Time-frequency based analysis of wireless signals. In Proceedings of the 2012 Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 19–21 June 2012; pp. 92–95. [Google Scholar]
- Yang, Z.; Qiu, W.; Sun, H.; Nallanathan, A. Robust radar emitter recognition based on the three-dimensional distribution feature and transfer learning. Sensors 2016, 16, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.; Jin, T.; Yang, D. An improved time-frequency analysis method in interference detection for GNSS receivers. Sensors 2015, 15, 9404–9426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, M. Exact description of free electromagnetic wave fields in terms of rays. Opt. Express 2003, 11, 3128. [Google Scholar] [CrossRef] [PubMed]
- Dragoman, D.; Peiponen, K.-E. (Eds.) Terahertz Spectroscopy and Imaging; Springer Series in Optical Sciences 171; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Lakshminarayan, V.; Calvo, M.L.; Alieva, T. Mathematical Optics: Classical, Quantum, and Computational Methods; CRC Press: Boca Raton, FL, USA, 2012; pp. 13–51. [Google Scholar]
- Torre, A. Linear Ray and Wave Optics in Phase Space; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Pinhasi, Y.; Lurie, Y.; Yahalom, A. Model and simulation of wide-band interaction in free-electron lasers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 475, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, L. Cross sections. Scope 2015, 2015, 6. [Google Scholar] [CrossRef]
- Pinhasi, Y.; Lurie, Y.; Yahalom, A. Space-frequency model of ultra wide-band interactions in free-electron lasers. In Free Electron Laser, Proceedings of the 28th International Conference, FEL 2006, Berlin, Germany, 27 August–1 September 2006; BESSY: Berlin, Germany, 2006; pp. 513–516. [Google Scholar]
- Pinhasi, Y.; Lurie, Y.; Yahalom, A. Space-frequency model of ultrawide-band interactions in free-electron lasers. Phys. Rev. Spec. Top. Accel. Beams 2005, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lurie, Y.; Bratman, V.L.; Savilov, A.V. Energy enhancement and spectrum narrowing in terahertz electron sources due to negative mass instability. Phys. Rev. Accel. Beams 2016, 19, 50704. [Google Scholar] [CrossRef]
- Lurie, Y.; Pinhasi, Y. Enhanced super-radiance from energy-modulated short electron bunch free-electron lasers. Phys. Rev. Spec. Top. Accel. Beams 2007, 10, 080703. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimov, M.; Dyunin, E.; Gerasimov, J.; Ciplis, J.; Friedman, A. Application of Wigner Distribution Function for THz Propagation Analysis. Sensors 2022, 22, 240. https://doi.org/10.3390/s22010240
Gerasimov M, Dyunin E, Gerasimov J, Ciplis J, Friedman A. Application of Wigner Distribution Function for THz Propagation Analysis. Sensors. 2022; 22(1):240. https://doi.org/10.3390/s22010240
Chicago/Turabian StyleGerasimov, Michael, Egor Dyunin, Jacob Gerasimov, Johnathan Ciplis, and Aharon Friedman. 2022. "Application of Wigner Distribution Function for THz Propagation Analysis" Sensors 22, no. 1: 240. https://doi.org/10.3390/s22010240
APA StyleGerasimov, M., Dyunin, E., Gerasimov, J., Ciplis, J., & Friedman, A. (2022). Application of Wigner Distribution Function for THz Propagation Analysis. Sensors, 22(1), 240. https://doi.org/10.3390/s22010240