Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching
Abstract
:1. Introduction
2. The Proposed System
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Evaluation
4. Results and Discussion
4.1. Model Performance Comparison
4.2. Comparison of 2D/3D Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Ageing 2020 Highlights; United Nations: New York, NY, USA, 2020; p. 1. [Google Scholar]
- World Health Organization. Stroke, Cerebrovascular Accident. Available online: http://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html (accessed on 21 June 2020).
- Zhou, H.; Hu, H. Human motion tracking for rehabilitation—A survey. Biomed. Signal Process. Control 2008, 3, 1–18. [Google Scholar] [CrossRef]
- World Health Organization. World Report on Disability 2011; Who Press, World Health Organization: Geneva, Switzerland, 2011; p. 96. [Google Scholar]
- World Health Organization. Rehabilitation. Available online: https://www.who.int/news-room/fact-sheets/detail/rehabilitation (accessed on 21 June 2020).
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.; Kang, D.; Kim, J. Upper body motion tracking with inertial sensors. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 14–18 December 2010; pp. 1746–1751. [Google Scholar]
- Hayward, K.S.; Eng, J.J.; Boyd, L.A.; Lakhani, B.; Bernhardt, J.; Lang, C.E. Exploring the role of accelerometers in the measurement of real world upper-limb use after stroke. Brain Impair. 2016, 17, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Vicon. Available online: https://www.vicon.com/ (accessed on 21 June 2020).
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, R.; Yang, X.D.; Bateman, S.; Jorge, J.; Tang, A. Physio@ Home: Exploring visual guidance and feedback techniques for physiotherapy exercises. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15), Seoul, Korea, 18–23 April 2015; pp. 4123–4132. [Google Scholar]
- Ganapathi, V.; Plagemann, C.; Koller, D.; Thrun, S. Real time motion capture using a single time-of-flight camera. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 755–762. [Google Scholar]
- Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time human pose recognition in parts from single depth images. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304. [Google Scholar]
- Eichelberger, P.; Ferraro, M.; Minder, U.; Denton, T.; Blasimann, A.; Krause, F.; Baur, H. Analysis of accuracy in optical motion capture–A protocol for laboratory setup evaluation. J. Biomech. 2016, 49, 2085–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merriaux, P.; Dupuis, Y.; Boutteau, R.; Vasseur, P.; Savatier, X. A Study of Vicon System Positioning Performance. Sensors 2017, 17, 1591. [Google Scholar] [CrossRef] [PubMed]
- Bouvrie, J. Notes on Convolutional Neural Networks. 2006. Available online: http://cogprints.org/5869/1/cnn_tutorial.pdf (accessed on 18 December 2020).
- Viswakumar, A.; Rajagopalan, V.; Ray, T.; Parimi, C. Human gait analysis using OpenPose. In Proceedings of the 5th International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17 November 2019; pp. 310–314. [Google Scholar]
- Otsuka, K.; Yagi, N.; Yamanaka, Y.; Hata, Y.; Sakai, Y. Joint position registration between OpenPose and motion analysis for rehabilitation. In Proceedings of the IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL), Miyazaki, Japan, 9–11 November 2020; pp. 100–104. [Google Scholar]
- Yan, H.; Hu, B.; Chen, G.; Zhengyuan, E. Real-time continuous human rehabilitation action recognition using OpenPose and FCN. In Proceedings of the 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Shenzhen, China, 24–26 April 2020; pp. 239–242. [Google Scholar]
- Li, Y.R.; Miaou, S.G.; Hung, C.K.; Sese, J.T. A gait analysis system using two cameras with orthogonal view. In Proceedings of the International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011; pp. 2841–2844. [Google Scholar]
- Rekik, A.; Ben-Hamadou, A.; Mahdi, W. An adaptive approach for lip-reading using image and depth data. Multimed. Tools Appl. 2016, 75, 8609–8636. [Google Scholar] [CrossRef]
- Foix, S.; Alenya, G.; Torras, C. Lock-in time-of-flight (ToF) cameras: A survey. IEEE Sens. J. 2011, 11, 1917–1926. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.Y.; Zheng, W.Z.; Lin, Y.Y.; Tang, S.T.; Chou, L.W.; Lai, Y.H. Deep-learning-based human motion tracking for rehabilitation applications using 3D image features. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 803–807. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, D.; Cai, L. Deep Learning-Based Upper Limb Functional Assessment Using a Single Kinect V2 Sensor. Sensors 2020, 20, 1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF models for sequence tagging. arXiv 2015, arXiv:1508.01991. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Jaitly, N.; Mohamed, A.R. Hybrid speech recognition with Deep Bidirectional LSTM. In Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 273–278. [Google Scholar]
- Fell, D.W.; Lunnen, K.Y.; Rauk, R.P. Lifespan Neurorehabilitation: A Patient-Centered Approach from Examination to Interventions and Outcomes; F.A. Davis Company: Philadelphia, PA, USA, 2018; pp. 1019–1022. [Google Scholar]
- Xsens. Available online: https://www.xsens.com/ (accessed on 21 June 2020).
- Focus Vision Technology. Available online: http://focusvision.tech/ (accessed on 21 June 2020).
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Wechsler, H., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 65–93. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. In Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR 2003), Edinburgh, UK, 3–6 August 2003. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Dozat, T. Incorporating Nesterov momentum into Adam. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Mayagoitia, R.E.; Nene, A.V.; Veltink, P.H. Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. J. Biomech. 2002, 35, 537–542. [Google Scholar] [CrossRef]
- Smith, M.W.; Then, A.Y.; Wor, C.; Ralph, G.; Pollock, K.H.; Hoenig, J.M. Recommendations for catch-curve analysis. N. Am. J. Fish. Manag. 2012, 32, 956–967. [Google Scholar] [CrossRef]
- Rogness, N.; Stephenson, P.; Stephenson, P.; Moore, D.S. SPSS Manual: For Introduction to the Practice of Statistics, 4th ed.; Macmillan Publishers: New York, NY, USA, 2002. [Google Scholar]
- Su, T.; Sun, H.; Ma, C.; Jiang, L.; Xu, T. HDL: Hierarchical deep learning model based human activity recognition using smartphone sensors. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
Model | Hidden Layer | Total Parameters |
---|---|---|
DNN | Neurons = (36, 324, 324, 324, 36) Dropout = (None, 0.3, 0.2, None, None) | 501,988 |
CNN | Filters = (32, 64, 128, 256) Kernel size = 3 × 3 Dropout = (None, 0.3, 0.2, None) | 512,644 |
DBLSTM | Bidirectional LSTM, units = 128 LSTM, units = 256 Dropout = (0.3, 0.2) | 500,996 |
DNN | CNN | DBLSTM | |
---|---|---|---|
X-axis acceleration | |||
RMSE | 0.30 | 0.26 | 0.22 |
PRMSE | 3.2% | 2.8% | 2.3% |
CMC | 0.990 | 0.993 | 0.995 |
Y-axis acceleration | |||
RMSE | 0.48 | 0.40 | 0.29 |
PRMSE | 4.3% | 3.6% | 3.5% |
CMC | 0.991 | 0.994 | 0.994 |
Z-axis acceleration | |||
RMSE | 0.38 | 0.37 | 0.33 |
PRMSE | 3.4% | 3.3% | 3.0% |
CMC | 0.926 | 0.930 | 0.943 |
3D Images | 2D Images | |
---|---|---|
X-axis acceleration | ||
RMSE | 0.22 | 0.25 |
PRMSE | 2.3% | 2.6% |
CMC | 0.995 | 0.993 |
Y-axis acceleration | ||
RMSE | 0.29 | 0.47 |
PRMSE | 3.5% | 4.3% |
CMC | 0.994 | 0.991 |
Z-axis acceleration | ||
RMSE | 0.33 | 0.34 |
PRMSE | 3.0% | 3.0% |
CMC | 0.943 | 0.941 |
3D Images | 2D Images | |
---|---|---|
X-axis acceleration | ||
RMSE | 0.37 | 2.92 |
PRMSE | 4.7% | 37.2% |
CMC | 0.984 | 0.004 |
Y-axis acceleration | ||
RMSE | 0.46 | 4.02 |
PRMSE | 2.7% | 23.5% |
CMC | 0.987 | 0.010 |
Z-axis acceleration | ||
RMSE | 0.50 | 5.88 |
PRMSE | 8.5% | 42.5% |
CMC | 0.960 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-Y.; Chou, L.-W.; Lee, H.-M.; Young, S.-T.; Lin, C.-H.; Zhou, Y.-S.; Tang, S.-T.; Lai, Y.-H. Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching. Sensors 2022, 22, 292. https://doi.org/10.3390/s22010292
Chen K-Y, Chou L-W, Lee H-M, Young S-T, Lin C-H, Zhou Y-S, Tang S-T, Lai Y-H. Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching. Sensors. 2022; 22(1):292. https://doi.org/10.3390/s22010292
Chicago/Turabian StyleChen, Kai-Yu, Li-Wei Chou, Hui-Min Lee, Shuenn-Tsong Young, Cheng-Hung Lin, Yi-Shu Zhou, Shih-Tsang Tang, and Ying-Hui Lai. 2022. "Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching" Sensors 22, no. 1: 292. https://doi.org/10.3390/s22010292
APA StyleChen, K. -Y., Chou, L. -W., Lee, H. -M., Young, S. -T., Lin, C. -H., Zhou, Y. -S., Tang, S. -T., & Lai, Y. -H. (2022). Human Motion Tracking Using 3D Image Features with a Long Short-Term Memory Mechanism Model—An Example of Forward Reaching. Sensors, 22(1), 292. https://doi.org/10.3390/s22010292