Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems
Abstract
:1. Introduction
2. Technical Background
2.1. Reinforcement Learning
2.2. Deep Learning
- Convolutional Neural NetworksConvolutional Neural Networks (CNNs) are ANNs with a much higher number of layers and nodes. They are typically adopted for images classification. An CNN needs less preprocessing as compared to other classification schemes. Relevant filters are used in CNNs to capture the temporal and spatial dependencies in the image [46,47]. The most common CNN architectures are ZFNet, ResNet, GoogleNet, VG-GNet, AlexNet, and LeNet [48].
- Recurrent Neural NetworksRNN is another important architecture for DL. Differently from CNN, where the layers are sequentially connected, in a RNN there are some nodes whose output is reported back in the input of a previous node. In this way, the network is capable of remembering some information time-related. Recurrent Neural Networks (RNNs), indeed, are massively applied for time-series analysis and prediction in a configuration called LSTM [49].
- Generative Adversarial NetworksA Generative Adversarial Network (GAN) consists of two sub-networks—the discriminator and the generator, where the later produces the content and the former validates it. GAN adopts feed-forward and relies typically on CNNs [50].
- Deep Belief NetworksDeep Belief Networks (DBNs) are generative neural networks with undirected connections between some layers called Restricted Boltzmann Machines. These layers can be trained using a very fast unsupervised learning algorithm called Contrastive Divergence. In DBNs, hidden patterns are learned globally, while in every layer of other deep nets complex patterns are learned progressively [51].
- AutoencodersAutoencoders are applied to reduce the dimension of data and to detect problems. The first layer in an autoencoder is an encoding layer, whereas the transpose of it is used as a decoder. Training is unsupervised and the Regression/Classification problems may be addressed and optimized using Stochastic gradient descent. Input data are translated to a latent space denoted by the encoder, as given below:Input data are reconstructed from the latent space denoted by the decoder as described below.Autoencoders can be represented essentially by the below equation. r is the decoded output and it will be identical to input x
- Radial Basis Function Neural NetworksRBFNN is a type of ANN that utilizes radial basis functions (RBF) as activation functions. The output of the RBFNN is a linear combination of RBF of the neuron parameters and inputs. RBNN has only one hidden layer which is known as a feature vector. Training in RBNN is faster than in MLP but classification in RBNN takes more time than MLP.
2.3. MIMO Communication
- Single User MIMOSingle user MIMO, or multi-antenna MIMO, has more than one antenna both at the transmitter side and receiver side. There are some special variants of MIMO such as “Multiple-input single-output” (MISO) (only one antenna at the receiver side), “Single-input multiple-output” (SIMO) (single antenna at the transmitter side), and a special scenario when transmitter as well as receiver have one antenna is called SISO [52].
- Multi-user MIMOMulti-User MIMO MU-MIMO has been considered in recent WiMAX and 3GPP standards as a candidate technology by various companies such as Freescale, Nokia, Philips, Huawei, TI, Ericsson, Qualcomm, Intel, and Samsung. MU-MIMO systems are more suitable for low-complexity mobile phones with a few receiving antennas, while single-user MIMO’s are more suitable for complex devices having many antennas due to their higher per-user throughput. Moreover, enhanced MU-MIMO uses advanced precoding and decoding techniques.
- Cooperative MIMO (CO-MIMO)Cooperative MIMO (CO-MIMO) employs multiple surrounding BS to jointly transmit and receive signals to and from users. This prevents inter-cell interference in neighboring BS as may be experienced with traditional MIMO systems.
- Macrodiversity MIMOMacrodiversity MIMO is a type of space diversity approach that applies many transmit/receive BS for coherent communication with single/multiple users. It is possible that users are distributed in a coverage area that has the same resources of time and frequency [53,54,55]. The transmitters, as well as the users in multi-user microdiversity MIMO, are far apart as compared to that of conventional microdiversity MIMO approaches (e.g., SU-MIMO). As a result, each constituent connection in the virtual MIMO connection has a unique average link SNR. Macrodiversity MIMO techniques face some theoretical and practical challenges. One of the most fundamental issues is to get knowledge about how aggregated system capacity is affected by different average link SNRs and the performance of users individually in fading environments [56].
- Massive MIMOMassive MIMO Ma-MIMO is a scheme where the number of terminals is inferior to of BS antennas [57]. The maximum benefits of the massive MIMO in a rich scattering environment can be obtained by applying simple beamforming schemes such as zero-forcing (ZF), maximum ratio combining (MRC) [58], or maximum ratio transmission (MRT) [59]. However, it is difficult to achieve these advantages without the availability of accurate CSI.
3. Related Survey Papers
Paper | Technology | Year | Area | Contribution | Limitation |
---|---|---|---|---|---|
[60] | DRL | 2020 | Wireless Network Optimization | Only three DRL techniques: DDPG, NEC, and VBC, are considered for wireless network optimization. Their performances are compared in terms of rate and convergence speed improvement. | Only three DRL methods are taken into account without concerning about MIMO aspects. |
[62] | Channel Estimation Techniques | 2020 | mmWave communication | Review of the channel estimation methods associated with the different mmWave system architectures | Only one area of MIMO communication (i.e., mmWave) is discussed, as well as DL and RL techniques are not considered. |
[63] | Signal Processing | 2016 | mmWave Ma-MIMO communication | Survey of signal processing challenges in mmWave systems, especially focusing on issues due to utilizing MIMO communication at higher carrier frequencies. | Only mmWave communication with signal processing techniques are discussed, as well as DL and RL techniques are not considered. |
[61] | DL | 2019 | Multi-cell networks | Review the application of DL for the radio resource allocation in multi-cell networks. | Focused only on resource allocation. |
[64] | DL | 2019 | Mobile and Wireless Networking | Application of DL in mobile and wireless networking | MIMO systems are not considered. |
[65] | ML | 2021 | Link Quality Estimation | Review ML-based link quality estimation models. It addresses quality requirements and standard design steps perspectives using performance data. | General ML techniques are concerned. |
[66] | — | 2020 | Ma-MIMO | Presents fundamental challenges related to signal detection, energy efficiency, user scheduling, precoding, channel estimation and pilot contamination in a Ma-MIMO system, and solutions to these challenges. | General aspects of Ma-MIMO are considered without application of DL and RL. |
[67] | DRL | 2019 | Communications and Networking | Connectivity preservation, network security, data offloading, data rate control, wireless caching, and dynamic network access issues are addressed. | MIMO systems are not discussed in detail. |
[69] | DL | 2021 | Cybersecurity in Mobile Networks | Cybersecurity aspects: privacy preservation, software attacks, attacks and infrastructure threads are discussed. | No MIMO application. |
[70] | AI | 2020 | 5G Wireless Systems | An in-depth review of AI for 5G wireless communication systems including cyber-security, network management, and radio resource allocation | Only Ma-MIMO were discussed in one subsection using general AI approaches. |
[68] | Array Signal Processing Techniques | 2019 | Enhanced Massive MIMO | A review of array signal processing in Ma-MIMO communications. | Only Ma-MIMO systems are considered with array signal processing techniques. No application of DL in MIMO. |
Our work | RL and DL | 2022 | MIMO communication | Comprehensive overview of the application of RL and DL in different aspects of MIMO communication. | The tutorial aspect of our survey only presents a brief introduction to RL and DL. |
4. RL and DL Application in MIMO
4.1. Detection, Classification, and Compression
4.2. Channel Estimation
4.3. Positioning, Sensing, and Localization
4.4. CSI Acquisition and Feedback, Security, and Robustness
4.5. mmWave Communications
4.6. Resource Management and Scheduling
4.7. Miscellaneous Applications
5. Statistics and Impact
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Acronyms
RL | Reinforcement Learning |
DRL | Deep Reinforcement Learning |
AI | Artificial Intelligence |
MDP | Markov Decision Process |
MC | Monte Carlo |
TD | Temporal Difference |
DP | Dynamic Programming |
VIA | Value Iteration Algorithm |
PIA | Value Iteration Algorithm |
AC | Actor–Critic |
A2C | Advantage Actor–Critic |
A3C | Asynchronous Advantage Actor–Critic |
DQN | Deep Q-Network |
NN | Neural Network |
TS | Thompson Sampling |
CNN | Convolutional Neural Network |
FC | Fully Conntected |
UCB | Upper Confidence Bound |
RMSE | Root Mean Square Error |
SARSA | State-Action-Reward-State-Action |
ANN | Artificial Neural Network |
DBN | Deep Belief Network |
NEC | Neural Episodic Network |
DRL | Deep Reinforcement Learning |
IRL | Inverse Reinforcement Learning |
DNN | Deep Neural Network |
MIMO | Multiple-Input and Multiple-Output |
RNN | Recurrent Neural Network |
VBC | Variance-Based Control |
ML | Machine Learning |
BS | Base Station |
TD | Temporal Difference |
UE | User Equipment |
LTE | Long-Term Evolution |
DS | Delivery System |
DL | Deep Learning |
RMS | Real-time multimedia streaming |
ITS | Intelligent transportation systems |
MC | Monte Carlo |
DP | Dynamic Programming |
FDD | Frequency Division Duplex |
MU-MIMO | Multi-User MIMO |
NOMA | Non-Orthogonal Multiple Access |
POMDP | Partially Observable Markov Decision Process |
ADC | Analogue-to-Digital Converter |
MLD | Maximum-Likelihood Detection |
CSI | Channel State Information |
SISO | Single-Input Multiple- Output |
BF | Beamforming |
LSTM | Long Short-Term Memory |
MMSE | Minimum Mean Square Error |
mmWave | millimeter wave |
BER | Bit Error Rate |
SNR | Signal-to-Noise Ratio |
TDD | Time Division Duplex |
CR | Compression Ratio |
NGN | Next-Generation Network |
MSE | Mean Square Error |
STBC | Space Time Block Coded |
AMP | Approximate Message Passing |
MPD | Message Passing Detector |
DoA | Direction of Arrival |
UAC | Underwater Acoustic Communication |
CS | Compressive Sensing |
SGD | Stochastic Gradient Descent |
OFDM | Orthogonal Frequency Division Multiplexing |
MLP | Multi-Layer Perceptron |
3D | Three Dimensional |
GP | Gaussian Process |
5G | Fifth Generation |
3GPP | 3rd Generation Partnership Project |
DDPG | Deep Deterministic Policy Gradient |
NEC | Neural Episodic Control |
Ma-MIMO | Massive MIMO |
ReLU | Rectified Linear Unit |
ANC | Adaptive Neural Control |
RBFNN | Radial Basis Function Neural network |
References
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 2012, 30, 40–60. [Google Scholar] [CrossRef] [Green Version]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Marzetta, T.L. Massive MIMO: An introduction. Bell Labs Tech. J. 2015, 20, 11–22. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998; Volume 135. [Google Scholar]
- Kormushev, P.; Calinon, S.; Caldwell, D. Reinforcement Learning in Robotics: Applications and Real-World Challenges. Robotics 2013, 2, 122–148. [Google Scholar] [CrossRef] [Green Version]
- Argall, B.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009, 57, 469–483. [Google Scholar] [CrossRef]
- Guenter, F.; Hersch, M.; Calinon, S.; Billard, A. Reinforcement learning for imitating constrained reaching movements. Adv. Robot. 2007, 21, 1521–1544. [Google Scholar] [CrossRef] [Green Version]
- Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar]
- Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Machine learning for wireless networks with artificial intelligence: A tutorial on neural networks. arXiv 2017, arXiv:1710.02913. [Google Scholar]
- Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 2595–2621. [Google Scholar] [CrossRef]
- Fadlullah, Z.M. State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 2017, 19, 2432–2455. [Google Scholar] [CrossRef]
- Xin, Y. Machine learning and deep learning methods for cybersecurity. IEEE Access 2018, 6, 35365–35381. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; He, X.; Gao, J.; Li, L.; Deng, L.; Ostendorf, M. Deep reinforcement learning with a natural language action space. In Proceedings of the Association for Computational Linguistics Annual Meeting (ACL), Berlin, Germany, 7–12 August 2016. [Google Scholar]
- Guu, K.; Pasupat, P.; Liu, E.Z.; Liang, P. From language to programs: Bridging reinforcement learning and maximum marginal likelihood. In Proceedings of the Association for Computational Linguistics Annual Meeting (ACL), Vancouver, BC, Canada, 30 July–4 August 2017. [Google Scholar]
- Narasimhan, K.; Yala, A.; Barzilay, R. Improving information extraction by acquiring external evidence with reinforcement learning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, TX, USA, 1–4 November 2016. [Google Scholar]
- Radford, A.; Jozefowicz, R.; Sutskever, I. Learning to Generate Reviews and Discovering Sentiment. arXiv 2017, arXiv:1704.01444. [Google Scholar]
- Jeerige, A.; Bein, D.; Verma, A. Comparison of Deep Reinforcement Learning Approaches for Intelligent Game Playing. In Proceedings of the 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 0366–0371. [Google Scholar]
- Shao, K.; Tang, Z.; Zhu, Y.; Li, N.; Zhao, D. A Survey of Deep Reinforcement Learning in Video Games. arXiv 2019, arXiv:1912.10944. [Google Scholar]
- Aytar, Y. Playing hard exploration games by watching youtube. In Proceedings of the Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montreal, QC, Canada, 3–8 December 2018. [Google Scholar]
- Christopher, B.; Greg, B.; Brooke, C. Dota 2 with large scale deep reinforcement learning. arXiv 2019, arXiv:1912.06680. [Google Scholar]
- Saravanan, M.; Kumar, P.S.; Sharma, A. IoT Enabled Indoor Autonomous Mobile Robot using CNN and Q-Learning. In Proceedings of the 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 1–3 July 2019. [Google Scholar]
- Künzel, G.; Cainelli, G.P.; Müller, I.; Pereira, C.E. Weight adjustments in a routing algorithm for wireless sensor and actuator networks using Q-learning. IFAC-PapersOnLine 2018, 51, 58–63. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Z.; Gao, Y. Resource allocation for edge computing in IoT networks via reinforcement learning. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Testa, A.; Cinque, M.; Coronato, A.; Pietro, G.; Augusto, J. Heuristic strategies for assessing wireless sensor network resiliency: An event-based formal approach. J. Heuristics 2015, 21, 145–175. [Google Scholar] [CrossRef] [Green Version]
- Bakhouya, M.; Campbell, R.; Coronato, A.; Pietro, G.d.; Ranganathan, A. Introduction to special section on formal methods in pervasive computing. ACM Trans. Auton. Adapt. Syst. 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Qiu, X.; Nguyen, T.A.; Crow, M.L. Heterogeneous energy storage optimization for microgrids. IEEE Trans. Smart Grid 2016, 7, 1453–1461. [Google Scholar] [CrossRef]
- Zhang, W.; Dietterich, T.G. A reinforcement learning approach to job-shop scheduling. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montreal, QC, Canada, 20–25 August 1995; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; Volume 2, pp. 1114–1120. [Google Scholar]
- Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource Management with Deep Reinforcement Learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNets ’16), Atlanta, GA, USA, 9–10 November 2016; ACM: New York, NY, USA, 2016; pp. 50–56. [Google Scholar]
- Tesauro, G. Online Resource Allocation Using Decompositional Reinforcement Learning. In Proceedings of the AAAI, Pittsburgh, PA, USA, 9–13 July 2005; ISBN 978-1-57735-236-5. [Google Scholar]
- Boyan, J.A.; Littman, M.L. Packet routing in dynamically changing networks: A reinforcement learning approach. In Proceedings of the 6th International Conference on Neural Information Processing Systems (NIPS’93), Denver, CO, USA, 29 November–2 December 1993; pp. 671–678. [Google Scholar]
- Brunner, G.; Richter, O.; Wang, Y.; Wattenhofer, R. Teaching a machine to read maps with deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Cao, Q.; Lin, L.; Shi, Y.; Liang, X.; Li, G. Attention-aware face hallucination via deep reinforcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Mao, H.; Alizadeh, M.; Menache, I.; Kandula, S. Resource management with deep reinforcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Atlanta, GA, USA, 9–10 November 2016. [Google Scholar]
- Liu, F.; Li, S.; Zhang, L.; Zhou, C.; Ye, R.; Wang, Y.; Lu, J. 3DCNN-DQN-RNN: A deep reinforcement learning framework for semantic parsing of large-scale 3d point clouds. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Coronato, A.; Naeem, M.; De Pietro, G.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey. Artif. Intell. Med. 2020, 109, 101964. [Google Scholar] [CrossRef] [PubMed]
- Cinque, M.; Coronato, A.; Testa, A. A failure modes and effects analysis of mobile health monitoring systems. In Innovations and Advances in Computer, Information, Systems Sciences, and Engineering; Springer: New York, NY, USA, 2013; pp. 569–582. [Google Scholar]
- Naeem, M.; Paragliola, G.; Coronato, A. A reinforcement learning and deep learning based intelligent system for the support of impaired patients in home treatment. Expert Syst. Appl. 2021, 168, 114285. [Google Scholar] [CrossRef]
- Alsheikh, M.A.; Niyato, D.; Lin, S.; Tan, H.P.; Han, Z. Mobile big data analytics using deep learning and apache spark. IEEE Netw. 2016, 30, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Shah, S.I.H.; Coronato, A. Inverse Reinforcement Learning Through Max-Margin Algorithm. In Proceedings of the Intelligent Environments 2021: Workshop Proceedings of the 17th International Conference on Intelligent Environments, Dubai, United Arab Emirates, 21–24 June 2021; Volume 29, p. 190. [Google Scholar]
- Shah, S.I.H.; De Pietro, G. An Overview of Inverse Reinforcement Learning Techniques. In Proceedings of the Intelligent Environments 2021: Workshop Proceedings of the 17th International Conference on Intelligent Environments, Dubai, United Arab Emirates, 21–24 June 2021; Volume 29, p. 202. [Google Scholar]
- Shah, S.I.H.; Coronato, A. Learning Tasks in Intelligent Environments via Inverse Reinforcement Learning. In Proceedings of the 2021 17th International Conference on Intelligent Environments (IE), Dubai, United Arab Emirates, 21–24 June 2021; pp. 1–4. [Google Scholar]
- Naeem, M.; Rizvi, S.T.H.; Coronato, A. A Gentle Introduction to Reinforcement Learning and its Application in Different Fields. IEEE Access 2020, 8, 209320–209344. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.; Amudha, P.; Sivakumari, S. Deep Learning Techniques: An Overview. In International Conference on Advanced Machine Learning Technologies and Applications; Springer: Singapore, 2020; pp. 599–608. [Google Scholar]
- Le, Q.V. A tutorial on deep learning part 2: Autoencoders, convolutional neural networks and recurrent neural networks. Google Brain 2015, 20, 1–20. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–21. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Maiorino, E.; Kampffmeyer, M.C.; Rizzi, A.; Jenssen, R. An overview and comparative analysis of recurrent neural networks for short term load forecasting. arXiv 2017, arXiv:1705.04378. [Google Scholar]
- Ian, G.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D. Generative Adversarial Nets. Available online: https://arxiv.org/pdf/1406.2661.pdf (accessed on 1 December 2021).
- Salakhutdinov, R.; Hinton, G. Semantic hashing. Int. J. Approx. Reason. 2009, 50, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Slyusar, V.I.; Titov, I. Correction of characteristics of transmitting channels in an active digital antenna array. Radioelectron. Commun. Syst. 2004, 47, 9–13. [Google Scholar]
- Björnson, E.; Jorswieck, E. Optimal Resource Allocation in Coordinated Multi-Cell Systems; Now Publishers Inc.: Hanover, MA, USA, 2013. [Google Scholar]
- Gesbert, D.; Hanly, S.; Huang, H.; Shitz, S.S.; Simeone, O.; Yu, W. Multi-cell MIMO cooperative networks: A new look at interference. IEEE J. Sel. Areas Commun. 2010, 28, 1380–1408. [Google Scholar] [CrossRef] [Green Version]
- Karakayali, M.K.; Foschini, G.J.; Valenzuela, R.A. Network coordination for spectrally efficient communications in cellular systems. IEEE Wirel. Commun. 2006, 13, 56–61. [Google Scholar] [CrossRef]
- Basnayaka, D.A.; Smith, P.J.; Martin, P.A. Performance analysis of macrodiversity MIMO systems with MMSE and ZF receivers in flat Rayleigh fading. IEEE Trans. Wirel. Commun. 2013, 12, 2240–2251. [Google Scholar] [CrossRef] [Green Version]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Jakes, W.C. Mobile Microwave Communication; Wiley-IEEE Press: Piscataway, NJ, USA, 1974. [Google Scholar]
- Lo, T.K. Maximum ratio transmission. In Proceedings of the 1999 IEEE international conference on communications (Cat. No. 99CH36311), Vancouver, BC, Canada, 6–10 June 1999; Volume 2, pp. 1310–1314. [Google Scholar]
- Yang, K.; Shen, C.; Liu, T. Deep Reinforcement Learning based Wireless Network Optimization: A Comparative Study. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 1248–1253. [Google Scholar]
- Ahmed, K.I.; Tabassum, H.; Hossain, E. Deep learning for radio resource allocation in multi-cell networks. IEEE Netw. 2019, 33, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Hassan, K.; Masarra, M.; Zwingelstein, M.; Dayoub, I. Channel estimation techniques for millimeter-wave communication systems: Achievements and challenges. IEEE Open J. Commun. Soc. 2020, 1, 1336–1363. [Google Scholar] [CrossRef]
- Heath, R.W.; Gonzalez-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep learning in mobile and wireless networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2224–2287. [Google Scholar] [CrossRef] [Green Version]
- Cerar, G.; Yetgin, H.; Mohorčič, M.; Fortuna, C. Machine learning for wireless link quality estimation: A survey. IEEE Commun. Surv. Tutor. 2021, 23, 696–728. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Gao, F.; Jin, S.; Lin, H. An overview of enhanced massive MIMO with array signal processing techniques. IEEE J. Sel. Top. Signal Process. 2019, 13, 886–901. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Otero, B.; Gutiérrez, N.; Canal, R. A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks. IEEE Commun. Surv. Tutor. 2021, 23, 1920–1955. [Google Scholar] [CrossRef]
- Arjoune, Y.; Faruque, S. Artificial intelligence for 5g wireless systems: Opportunities, challenges, and future research direction. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 1023–1028. [Google Scholar]
- Hu, Q.; Gao, F.; Zhang, H.; Li, G.Y.; Xu, Z. Understanding Deep MIMO Detection. arXiv 2021, arXiv:2105.05044. [Google Scholar]
- Wang, L.; Fortunati, S.; Greco, M.S.; Gini, F. Reinforcement learning-based waveform optimization for MIMO multi-target detection. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1329–1333. [Google Scholar]
- Ahmed, A.M.; Ahmad, A.A.; Fortunati, S.; Sezgin, A.; Greco, M.S.; Gini, F. A Reinforcement Learning based approach for Multi-target Detection in Massive MIMO radar. arXiv 2020, arXiv:2005.04708. [Google Scholar]
- Samuel, N.; Diskin, T.; Wiesel, A. Deep MIMO detection. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 3–6 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Samuel, N.; Diskin, T.; Wiesel, A. Learning to Detect. arXiv 2018, arXiv:1805.07631. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. A Model-Driven Deep Learning Network for MIMO Detection. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Chennai, India, 3–5 April 2018; pp. 584–588. [Google Scholar] [CrossRef] [Green Version]
- Un, M.W.; Shao, M.; Ma, W.K.; Ching, P.C. Deep Mimo Detection Using ADMM Unfolding. In Proceedings of the 2019 IEEE Data Science Workshop (DSW), Toronto, ON, Canada, 2–5 June 2019; pp. 333–337. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y. Deep MIMO Detection Based on Belief Propagation. In Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Riva del Garda, Italy, 25–29 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Corlay, V.; Boutros, J.J.; Ciblat, P.; Brunel, L. Multilevel MIMO Detection with Deep Learning. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1805–1809. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Cheng, W.; Zhang, H. A partial learning-based detection scheme for massive MIMO. IEEE Wirel. Commun. Lett. 2019, 8, 1137–1140. [Google Scholar] [CrossRef]
- Wen, C.K.; Shih, W.T.; Jin, S. Deep Learning for Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2018, 7, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wen, C.K.; Jin, S.; Li, G.Y. Deep learning-based CSI feedback approach for time-varying massive MIMO channels. IEEE Wirel. Commun. Lett. 2018, 8, 416–419. [Google Scholar] [CrossRef] [Green Version]
- Ramjee, S.; Ju, S.; Yang, D.; Liu, X.; Gamal, A.E.; Eldar, Y.C. Fast deep learning for automatic modulation classification. arXiv 2019, arXiv:1901.05850. [Google Scholar]
- Meng, F.; Chen, P.; Wu, L.; Wang, X. Automatic Modulation Classification: A Deep Learning Enabled Approach. IEEE Trans. Veh. Technol. 2018, 67, 10760–10772. [Google Scholar] [CrossRef]
- Zhao, Z.; Vuran, M.C.; Guo, F.; Scott, S.D. Deep-waveform: A learned OFDM receiver based on deep complex-valued convolutional networks. IEEE J. Sel. Areas Commun. 2021, 39, 2407–2420. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Song, J. Multi-resolution CSI Feedback with deep learning in Massive MIMO System. arXiv 2019, arXiv:1910.14322. [Google Scholar]
- Jeon, Y.S.; Lee, N.; Poor, H.V. Robust data detection for MIMO systems with one-bit ADCs: A reinforcement learning approach. IEEE Trans. Wirel. Commun. 2019, 19, 1663–1676. [Google Scholar] [CrossRef]
- Jeon, Y.S.; So, M.; Lee, N. Reinforcement-learning-aided ML detector for uplink massive MIMO systems with low-precision ADCs. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Jeon, Y.S.; Lee, H.; Lee, N. Robust MLSD for wideband SIMO systems with one-bit ADCs: Reinforcement-learning approach. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Zhang, Y.; Alrabeiah, M.; Alkhateeb, A. Deep learning for massive MIMO with 1-bit ADCs: When more antennas need fewer pilots. IEEE Wirel. Commun. Lett. 2020, 9, 1273–1277. [Google Scholar] [CrossRef] [Green Version]
- Klautau, A.; González-Prelcic, N.; Mezghani, A.; Heath, R.W. Detection and channel equalization with deep learning for low resolution MIMO systems. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1836–1840. [Google Scholar]
- Peng, Y. LLL aided MIMO detection algorithm based on BP neural network optimization. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Information Systems, Chongqing, China, 28–30 May 2021; pp. 1–5. [Google Scholar]
- Gao, Y.; Niu, H.; Kaiser, T. Massive MIMO detection based on belief propagation in spatially correlated channels. In Proceedings of the SCC 2017, 11th International ITG Conference on Systems, Communications and Coding, Hamburg, Germany, 6–9 February 2017; pp. 1–6. [Google Scholar]
- Zhang, Y.; Ge, L.; You, X.; Zhang, C. Belief propagation detection based on max-sum algorithm for massive MIMO systems. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 11–13 October 2017; pp. 1–6. [Google Scholar]
- Tan, X.; Xu, W.; Be’ery, Y.; Zhang, Z.; You, X.; Zhang, C. Improving massive MIMO belief propagation detector with deep neural network. arXiv 2018, arXiv:1804.01002. [Google Scholar]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Model-driven deep learning for joint MIMO channel estimation and signal detection. arXiv 2019, arXiv:1907.09439. [Google Scholar]
- Tan, X.; Zhong, Z.; Zhang, Z.; You, X.; Zhang, C. Low-complexity message passing MIMO detection algorithm with deep neural network. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 26–29 November 2018; pp. 559–563. [Google Scholar]
- Xu, D.; Du, Q. Space-Partition-Driven Learning Network for Efficient MIMO Detection. Procedia Comput. Sci. 2021, 187, 507–511. [Google Scholar] [CrossRef]
- Mohammad, A.; Masouros, C.; Andreopoulos, Y. Complexity-scalable neural-network-based MIMO detection with learnable weight scaling. IEEE Trans. Commun. 2020, 68, 6101–6113. [Google Scholar] [CrossRef]
- Pham, V.Q.; Dang, H.N.; Nguyen, T.V.; Nguyen, H.T. Performance of Deep Learning LDPC Coded Communications in Large Scale MIMO Channels. In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 12–13 December 2019; pp. 214–218. [Google Scholar]
- Jeon, Y.S.; Lee, N.; Poor, H.V. Reinforcement-learning-aided detector for time-varying MIMO systems with one-bit ADCs. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 9–13 December 2019. [Google Scholar]
- Baek, M.S.; Kwak, S.; Jung, J.Y.; Kim, H.M.; Choi, D.J. Implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters. IEEE Trans. Broadcast. 2019, 65, 636–642. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Xu, Y. Deep MIMO detection scheme for high-speed railways with wireless big data. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–5. [Google Scholar]
- Takabe, S.; Imanishi, M.; Wadayama, T.; Hayashi, K. Deep learning-aided projected gradient detector for massive overloaded MIMO channels. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Hua, H.; Wang, X.; Xu, Y. Signal detection in uplink pilot-assisted multi-user MIMO systems with deep learning. In Proceedings of the 2019 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 October 2019; pp. 369–373. [Google Scholar]
- Zheng, P.; Zeng, Y.; Liu, Z.; Gong, Y. Deep Learning Based Trainable Approximate Message Passing for Massive MIMO Detection. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Khani, M.; Alizadeh, M.; Hoydis, J.; Fleming, P. Adaptive neural signal detection for massive MIMO. IEEE Trans. Wirel. Commun. 2020, 19, 5635–5648. [Google Scholar] [CrossRef]
- Scotti, A. Graph Neural Networks and Learned Approximate Message Passing Algorithms for Massive MIMO Detection. Available online: https://www.researchgate.net/publication/342915312_Graph_Neural_Networks_for_Massive_MIMO_Detection (accessed on 1 December 2021).
- Gao, G.; Dong, C.; Niu, K. Sparsely connected neural network for massive MIMO detection. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 397–402. [Google Scholar]
- Delgado, O.; Labeau, F. Deep Learning Decoder for MIMO Communications with Impulsive Noise. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [Google Scholar]
- Yu, Y.; Wang, J.; Guo, L. Multisegment Mapping Network for Massive MIMO Detection. Int. J. Antennas Propag. 2021, 2021, 9989634. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Lee, K. Deep learning-aided tabu search detection for large MIMO systems. IEEE Trans. Wirel. Commun. 2020, 19, 4262–4275. [Google Scholar] [CrossRef]
- Li, L.; Hou, H.; Meng, W. Convolutional-Neural-Network-Based Detection Algorithm for Uplink Multiuser Massive MIMO Systems. IEEE Access 2020, 8, 64250–64265. [Google Scholar] [CrossRef]
- Yan, X.; Long, F.; Wang, J.; Fu, N.; Ou, W.; Liu, B. Signal detection of MIMO-OFDM system based on auto encoder and extreme learning machine. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 14–19 May 2017; pp. 1602–1606. [Google Scholar]
- Li, F.; Zhou, M.; Li, H. A novel neural network optimized by quantum genetic algorithm for signal detection in MIMO-OFDM systems. In Proceedings of the Computational Intelligence in Control and Automation (CICA), Orlando, FL, USA, 11–15 April 2011; pp. 170–177. [Google Scholar]
- Belgiovine, M.; Sankhe, K.; Bocanegra, C.; Roy, D.; Chowdhury, K.R. Deep Learning at the Edge for Channel Estimation in Beyond-5G Massive MIMO. IEEE Wirel. Commun. 2021, 28, 19–25. [Google Scholar] [CrossRef]
- Soltani, M.; Pourahmadi, V.; Mirzaei, A.; Sheikhzadeh, H. Deep learning-based channel estimation. IEEE Commun. Lett. 2019, 23, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Testa, A.; Coronato, A.; Cinque, M.; Augusto, J.C. Static verification of wireless sensor networks with formal methods. In Proceedings of the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, Naples, Italy, 25–29 November 2012; pp. 587–594. [Google Scholar]
- Liu, Z.; Zhang, L.; Ding, Z. Overcoming the Channel Estimation Barrier in Massive MIMO Communication via Deep Learning. IEEE Wirel. Commun. 2020, 27, 104–111. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J.; Huang, H.; Song, Y.; Gui, G. Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system. IEEE Trans. Veh. Technol. 2018, 67, 8549–8560. [Google Scholar] [CrossRef]
- Huang, H.; Gui, G.; Sari, H.; Adachi, F. Deep learning for super-resolution DOA estimation in massive MIMO systems. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Nie, S.; Akyildiz, I.F. Deep kernel learning-based channel estimation in ultra-massive MIMO communications at 0.06-10 THz. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Sun, H.; Zhao, Z.; Fu, X.; Hong, M. Limited feedback double directional massive MIMO channel estimation: From low-rank modeling to deep learning. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Gao, S.; Dong, P.; Pan, Z.; Li, G.Y. Deep learning based channel estimation for massive MIMO with mixed-resolution ADCs. IEEE Commun. Lett. 2019, 23, 1989–1993. [Google Scholar] [CrossRef] [Green Version]
- Zicheng, J.; Shen, G.; Nan, L.; Zhiwen, P.; Xiaohu, Y. Deep Learning-Based Channel Estimation for Massive-MIMO With Mixed-Resolution ADCs and Low-Resolution Information Utilization. IEEE Access 2021, 9, 54938–54950. [Google Scholar] [CrossRef]
- Nguyen, D.H. Neural network-optimized channel estimator and training signal design for MIMO systems with few-bit ADCs. IEEE Signal Process. Lett. 2020, 27, 1370–1374. [Google Scholar] [CrossRef]
- Takeda, M.Y.; Klautau, A.; Mezghani, A.; Heath, R.W. MIMO channel estimation with non-ideal ADCs: Deep learning versus GAMP. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Gold Coast, Australia, 13–16 October 2019; pp. 1–6. [Google Scholar]
- Yang, Y.; Gao, F.; Xing, C.; An, J.; Alkhateeb, A. Deep multimodal learning: Merging sensory data for massive MIMO channel prediction. IEEE J. Sel. Areas Commun. 2020, 39, 1885–1898. [Google Scholar] [CrossRef]
- Alrabeiah, M.; Alkhateeb, A. Deep learning for TDD and FDD massive MIMO: Mapping channels in space and frequency. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1465–1470. [Google Scholar]
- Tugfe Demir, Ö.; Björnson, E. Channel Estimation in Massive MIMO under Hardware Non-Linearities: Bayesian Methods versus Deep Learning. arXiv 2019, arXiv:1911.07316. [Google Scholar]
- Le, H.A.; Van Chien, T.; Nguyen, T.H.; Choo, H.; Nguyen, V.D. Machine Learning-Based 5G-and-Beyond Channel Estimation for MIMO-OFDM Communication Systems. Sensors 2021, 21, 4861. [Google Scholar] [CrossRef]
- Zimaglia, E. Deep Learning Application to 5G Physical Layer for Channel Estimation and CSI Feedback Improvement. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
- Helmy, H.; El Daysti, S.; Shatila, H.; Aboul-Dahab, M. Performance Enhancement of Massive MIMO Using Deep Learning-Based Channel Estimation. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1051, p. 012029. [Google Scholar]
- Hirose, H.; Ohtsuki, T.; Gui, G. Deep Learning-Based Channel Estimation for Massive MIMO Systems With Pilot Contamination. IEEE Open J. Veh. Technol. 2020, 2, 67–77. [Google Scholar] [CrossRef]
- Qiang, H.; Feifei, G.; Hao, Z.; Shi, J.; Ye, L.G. Deep Learning for MIMO Channel Estimation: Interpretation, Performance, and Comparison. arXiv 2019, arXiv:1911.01918. [Google Scholar]
- Wen, C.K.; Jin, S.; Wong, K.K.; Chen, J.C.; Ting, P. Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning. IEEE Trans. Wirel. Commun. 2014, 14, 1356–1368. [Google Scholar] [CrossRef]
- Ding, Y.; Chiu, S.E.; Rao, B.D. Bayesian channel estimation algorithms for massive MIMO systems with hybrid analog-digital processing and low-resolution ADCs. IEEE J. Sel. Top. Signal Process. 2018, 12, 499–513. [Google Scholar] [CrossRef]
- Zhu, C.; Zheng, Z.; Jiang, B.; Zhong, W.; Gao, X. Bayesian channel estimation for massive MIMO communications. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Chun, C.J.; Kang, J.M.; Kim, I.M. Deep learning-based joint pilot design and channel estimation for multiuser MIMO channels. IEEE Commun. Lett. 2019, 23, 1999–2003. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhu, P.; Li, J.; You, X. Deep learning-based pilot design for multi-user distributed massive MIMO systems. IEEE Wirel. Commun. Lett. 2019, 8, 1016–1019. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, M.; Mohammadkarimi, M.; Ardakani, M.; Jing, Y. Decision Directed Channel Estimation Based on Deep Neural Network k-Step Predictor for MIMO Communications in 5G. IEEE J. Sel. Areas Commun. 2019, 37, 2443–2456. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Qi, C.; Zhang, Z.; Cheng, J. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans. Commun. 2020, 68, 2838–2849. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.M.; Chun, C.J.; Kim, I.M. Deep learning based channel estimation for MIMO systems with received SNR feedback. IEEE Access 2020, 8, 121162–121181. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Jin, S.; Ai, B. Channel estimation for cell-free mmWave massive MIMO through deep learning. IEEE Trans. Veh. Technol. 2019, 68, 10325–10329. [Google Scholar] [CrossRef]
- Chen, Y.; Han, C. Deep cnn-based spherical-wave channel estimation for terahertz ultra-massive mimo systems. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Balevi, E.; Doshi, A.; Andrews, J.G. Massive MIMO channel estimation with an untrained deep neural network. IEEE Trans. Wirel. Commun. 2020, 19, 2079–2090. [Google Scholar] [CrossRef] [Green Version]
- Mthethwa, B.; Xu, H. Deep Learning-Based Wireless Channel Estimation for MIMO Uncoded Space-Time Labeling Diversity. IEEE Access 2020, 8, 224608–224620. [Google Scholar] [CrossRef]
- Liu, Y.; Chai, J.; Zhang, Y.; Liu, Z.; Jin, M.; Qiu, T. Low-complexity neural network based DOA estimation for wideband signals in massive MIMO systems. AEU-Int. J. Electron. Commun. 2021, 138, 153853. [Google Scholar] [CrossRef]
- Demir, Ö.T.; Björnson, E. Channel estimation under hardware impairments: Bayesian methods versus deep learning. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 27–30 August 2019; pp. 193–197. [Google Scholar]
- Qin, X.; Qu, F.; Zheng, Y.R. Bayesian iterative channel estimation and turbo equalization for multiple-input–multiple-output underwater acoustic communications. IEEE J. Ocean. Eng. 2020, 46, 326–337. [Google Scholar] [CrossRef]
- Ling, J.; Tan, X.; Yardibi, T.; Li, J.; Nordenvaad, M.L.; He, H.; Zhao, K. On Bayesian channel estimation and FFT-based symbol detection in MIMO underwater acoustic communications. IEEE J. Ocean. Eng. 2013, 39, 59–73. [Google Scholar] [CrossRef]
- Zhang, J.; He, H.; Yang, X.; Wen, C.K.; Jin, S.; Ma, X. Model-driven Deep Learning Based Turbo-MIMO Receiver. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 26–29 May 2020; pp. 1–5. [Google Scholar]
- Sabeti, P.; Farhang, A.; Macaluso, I.; Marchetti, N.; Doyle, L. Blind channel estimation for massive mimo: A deep learning assisted approach. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Shohat, M.; Tsintsadze, G.; Shlezinger, N.; Eldar, Y.C. Deep quantization for MIMO channel estimation. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 12–17 May 2019; pp. 3912–3916. [Google Scholar]
- Wang, X.; Hua, H.; Xu, Y. Pilot-assisted channel estimation and signal detection in uplink multi-user MIMO systems with deep learning. IEEE Access 2020, 8, 44936–44946. [Google Scholar] [CrossRef]
- Marinberg, B.; Cohen, A.; Ben-Dror, E.; Permuter, H.H. A Study on MIMO Channel Estimation by 2D and 3D Convolutional Neural Networks. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–6. [Google Scholar]
- Ma, X.; Gao, Z. Data-driven deep learning to design pilot and channel estimator for massive MIMO. IEEE Trans. Veh. Technol. 2020, 69, 5677–5682. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, F.; Attiah, K.M.; Yu, W. Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO. IEEE Trans. Wirel. Commun. 2021, 20, 4044–4057. [Google Scholar] [CrossRef]
- Chen, T.; Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y.; Wang, X.; Hou, X. Deep learning for joint channel estimation and feedback in massive MIMO systems. arXiv 2020, arXiv:2011.07242. [Google Scholar]
- Wang, C.X.; Di Renzo, M.; Stanczak, S.; Wang, S.; Larsson, E.G. Artificial intelligence enabled wireless networking for 5G and beyond: Recent advances and future challenges. IEEE Wirel. Commun. 2020, 27, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Ayyalasomayajula, R.; Arun, A.; Wu, C.; Sharma, S.; Sethi, A.R.; Vasisht, D.; Bharadia, D. Deep learning based wireless localization for indoor navigation. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK, 21–25 September 2020; pp. 1–14. [Google Scholar]
- Song, X.; Fan, X.; Xiang, C.; Ye, Q.; Liu, L.; Wang, Z.; He, X.; Yang, N.; Fang, G. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 2019, 7, 110698–110709. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, F.; Wang, B.; Liu, K.R. Massive MIMO for High-Accuracy Target Localization and Tracking. IEEE Internet Things J. 2021, 8, 10131–10145. [Google Scholar] [CrossRef]
- Mukhtar, H. Machine Learning Enabled-Localization in 5G and LTE Using Image Classification and Deep Learning. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2021. [Google Scholar]
- Shao, W.; Luo, H.; Zhao, F.; Ma, Y.; Zhao, Z.; Crivello, A. Indoor positioning based on fingerprint-image and deep learning. IEEE Access 2018, 6, 74699–74712. [Google Scholar] [CrossRef]
- Vieira, J.; Leitinger, E.; Sarajlic, M.; Li, X.; Tufvesson, F. Deep convolutional neural networks for massive MIMO fingerprint-based positioning. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Helsinki, Finland, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Sun, X.; Wu, C.; Gao, X.; Li, G.Y. Fingerprint-based localization for massive MIMO-OFDM system with deep convolutional neural networks. IEEE Trans. Veh. Technol. 2019, 68, 10846–10857. [Google Scholar] [CrossRef]
- Sun, X.; Wu, C.; Gao, X.; Li, G.Y. Deep Convolutional Neural Networks Enabled Fingerprint Localization for Massive MIMO-OFDM System. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Yang, Y.; Gao, F.; Li, G.Y.; Jian, M. Deep learning-based downlink channel prediction for FDD massive MIMO system. IEEE Commun. Lett. 2019, 23, 1994–1998. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gao, F.; Zhong, Z.; Ai, B.; Alkhateeb, A. Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems. IEEE Trans. Commun. 2020, 68, 7485–7497. [Google Scholar] [CrossRef]
- Osama, I.; Rihan, M.; Elhefnawy, M.; Eldolil, S. Deep Learning Based Hybrid Precoding Technique for Millimeter-Wave Massive MIMO Systems. In Proceedings of the 2021 International Conference on Electronic Engineering (ICEEM), Menouf, Egypt, 3–4 July 2021; pp. 1–7. [Google Scholar]
- Li, X.; Alkhateeb, A. Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 800–805. [Google Scholar]
- Arnold, M.; Hoydis, J.; ten Brink, S. Novel massive MIMO channel sounding data applied to deep learning-based indoor positioning. In Proceedings of the SCC 2019, 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 11–14 February 2019; pp. 1–6. [Google Scholar]
- Widmaier, M.; Arnold, M.; Dorner, S.; Cammerer, S.; ten Brink, S. Towards practical indoor positioning based on massive mimo systems. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar]
- Arnold, M.; Dorner, S.; Cammerer, S.; Ten Brink, S. On deep learning-based massive MIMO indoor user localization. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Sobehy, A. Machine Learning Based Localization in 5G. Ph.D. Thesis, Institut Polytechnique de Paris, Palaiseau, France, 2020. [Google Scholar]
- Sobehy, A.; Renault, É.; Mühlethaler, P. Generalization aspect of accurate machine learning models for CSI-based localization. Ann. Telecommun. 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Moosavi, S.S.; Fortier, P. An Accurate, Robust and Low Dimensionality Deep Learning Localization Approach in DM-MIMO Systems Based on RSS. Wirel. Pers. Commun. 2021. [Google Scholar] [CrossRef]
- De Bast, S.; Pollin, S. MaMIMO CSI-based positioning using CNNs: Peeking inside the black box. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 7–11 June 2020; pp. 1–6. [Google Scholar]
- De Bast, S.; Guevara, A.P.; Pollin, S. CSI-based positioning in massive MIMO systems using convolutional neural networks. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Helsinki, Finland, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Sobehy, A.; Renault, E.; Muhlethaler, P. CSI based indoor localization using ensemble neural networks. In Proceedings of the MLN 2019: 2nd IFIP International Conference on Machine Learning for Networking, Paris, France, 3–5 December 2019; Volume 12081, pp. 367–378. [Google Scholar]
- Cerar, G.; Švigelj, A.; Mohorčič, M.; Fortuna, C.; Javornik, T. Improving CSI-based Massive MIMO Indoor Positioning using Convolutional Neural Network. arXiv 2021, arXiv:2102.03130. [Google Scholar]
- Wu, C.; Yi, X.; Wang, W.; You, L.; Huang, Q.; Gao, X.; Liu, Q. Learning to localize: A 3D CNN approach to user positioning in massive MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 2021, 20, 4556–4570. [Google Scholar] [CrossRef]
- Wu, C.; Yi, X.; Wang, W.; Huang, Q.; Gao, X. 3D CNN-Enabled Positioning in 3D Massive MIMO-OFDM Systems. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hejazi, F.; Vuckovic, K.; Rahnavard, N. DyLoc: Dynamic Localization for Massive MIMO Using Predictive Recurrent Neural Networks. arXiv 2021, arXiv:2101.07848. [Google Scholar]
- Gante, J.; Falcao, G.; Sousa, L. Deep learning architectures for accurate millimeter wave positioning in 5G. Neural Process. Lett. 2020, 51, 487–514. [Google Scholar] [CrossRef]
- Patel, P.A. Millimeter Wave Positioning with Deep Learning. Master’s Thesis, California State University, Sacramento, CA, USA, 2020. [Google Scholar]
- Liu, Y.J.; Tang, L.; Tong, S.; Chen, C.P.; Li, D.J. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 165–176. [Google Scholar] [CrossRef]
- Mashhadi, M.B.; Gündüz, D. Deep learning for massive MIMO channel state acquisition and feedback. J. Indian Inst. Sci. 2020, 100, 369–382. [Google Scholar] [CrossRef]
- Qi, C.; Dong, P.; Ma, W.; Zhang, H.; Zhang, Z.; Li, G.Y. Acquisition of channel state information for mmwave massive MIMO: Traditional and machine learning-based approaches. arXiv 2020, arXiv:2006.08894. [Google Scholar] [CrossRef]
- Muhan, C.; Jiajia, G.; Xiao, L.; Shi, J. An overview of the CSI feedback based on deep learning for massive MIMO systems. Chin. J. Internet Things 2020, 4, 33. [Google Scholar]
- Deng, D.; Li, X.; Zhao, M.; Rabie, K.M.; Kharel, R. Deep learning-based secure MIMO communications with imperfect CSI for heterogeneous networks. Sensors 2020, 20, 1730. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, H. Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2020, 9, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Xu, W.; Shen, H.; Zhu, J.; Wang, K. MIMO channel information feedback using deep recurrent network. IEEE Commun. Lett. 2018, 23, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Debbah, M. Deep learning for UL/DL channel calibration in generic massive MIMO systems. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Liu, Z.; Zhang, L.; Ding, Z. Exploiting bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback. IEEE Wirel. Commun. Lett. 2019, 8, 889–892. [Google Scholar] [CrossRef]
- Ye, H.; Gao, F.; Qian, J.; Wang, H.; Li, G.Y. Deep learning-based denoise network for CSI feedback in FDD massive MIMO systems. IEEE Commun. Lett. 2020, 24, 1742–1746. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Fan, J.; Shen, W.; Qin, Z.; Li, G.Y. Deep learning and compressive sensing-based CSI feedback in FDD massive MIMO systems. IEEE Trans. Veh. Technol. 2020, 69, 9217–9222. [Google Scholar] [CrossRef]
- Jang, Y.; Kong, G.; Jung, M.; Choi, S.; Kim, I.M. Deep autoencoder based CSI feedback with feedback errors and feedback delay in FDD massive MIMO systems. IEEE Wirel. Commun. Lett. 2019, 8, 833–836. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y. Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback: Design, simulation, and analysis. IEEE Trans. Wirel. Commun. 2020, 19, 2827–2840. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guo, J.; Jin, S.; Wen, C.K.; Li, G.Y. A novel quantization method for deep learning-based massive MIMO CSI feedback. In Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019; pp. 1–5. [Google Scholar]
- Huang, X.L.; Wu, J.; Wen, Y.; Hu, F.; Wang, Y.; Jiang, T. Rate-adaptive feedback with Bayesian compressive sensing in multiuser MIMO beamforming systems. IEEE Trans. Wirel. Commun. 2016, 15, 4839–4851. [Google Scholar] [CrossRef]
- Mashhadi, M.B.; Yang, Q.; Gündüz, D. CNN-based analog CSI feedback in FDD MIMO-OFDM systems. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8579–8583. [Google Scholar]
- Boloursaz Mashhadi, M.; Yang, Q.; Gunduz, D. CNN-based Analog CSI Feedback in FDD MIMO-OFDM Systems. arXiv 2019, arXiv:1910.10428. [Google Scholar]
- Yang, Q.; Mashhadi, M.B.; Gündüz, D. Deep convolutional compression for massive MIMO CSI feedback. In Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019; pp. 1–6. [Google Scholar]
- Mashhadi, M.B.; Yang, Q.; Gündüz, D. Distributed deep convolutional compression for massive MIMO CSI feedback. IEEE Trans. Wirel. Commun. 2020, 20, 2621–2633. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Ding, Z. An efficient deep learning framework for low rate massive MIMO CSI reporting. IEEE Trans. Commun. 2020, 68, 4761–4772. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.; Wen, C.K.; Jin, S.; Li, G.Y. DL-based CSI feedback and cooperative recovery in massive MIMO. arXiv 2020, arXiv:2003.03303. [Google Scholar]
- Liao, Y.; Yao, H.; Hua, Y.; Li, C. CSI feedback based on deep learning for massive MIMO systems. IEEE Access 2019, 7, 86810–86820. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S. Deep learning-based CSI feedback for beamforming in single-and multi-cell massive MIMO systems. IEEE J. Sel. Areas Commun. 2020, 39, 1872–1884. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Song, J. Binary neural network aided CSI feedback in massive MIMO system. IEEE Wirel. Commun. Lett. 2021, 10, 1305–1308. [Google Scholar] [CrossRef]
- Chen, M.; Guo, J.; Wen, C.K.; Jin, S.; Li, G.Y.; Yang, A. Deep Learning-based Implicit CSI Feedback in Massive MIMO. arXiv 2021, arXiv:2105.10100. [Google Scholar] [CrossRef]
- Wang, J.; Gui, G.; Ohtsuki, T.; Adebisi, B.; Gacanin, H.; Sari, H. Compressive Sampled CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems. IEEE Trans. Commun. 2021, 69, 5873–5885. [Google Scholar] [CrossRef]
- Cao, Z.; Shih, W.T.; Guo, J.; Wen, C.K.; Jin, S. Lightweight convolutional neural networks for CSI feedback in massive MIMO. IEEE Commun. Lett. 2021, 25, 2624–2628. [Google Scholar] [CrossRef]
- Ji, S.; Li, M. CLNet: Complex Input Lightweight Neural Network Designed for Massive MIMO CSI Feedback. IEEE Wirel. Commun. Lett. 2021, 10, 2318–2322. [Google Scholar] [CrossRef]
- Arnold, M.; Dörner, S.; Cammerer, S.; Hoydis, J.; ten Brink, S. Towards practical FDD massive MIMO: CSI extrapolation driven by deep learning and actual channel measurements. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1972–1976. [Google Scholar]
- Liu, Q.; Guo, J.; Wen, C.K.; Jin, S. Adversarial attack on DL-based massive MIMO CSI feedback. J. Commun. Netw. 2020, 22, 230–235. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, X.; He, H.; Wang, J.; Song, J. Binarized Aggregated Network with Quantization: Flexible Deep Learning Deployment for CSI Feedback in Massive MIMO System. arXiv 2021, arXiv:2105.00354. [Google Scholar]
- Yu, X.; Li, X.; Wu, H.; Bai, Y. DS-NLCsiNet: Exploiting non-local neural networks for massive MIMO CSI feedback. IEEE Commun. Lett. 2020, 24, 2790–2794. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Fan, L.; Li, G.Y.; Karagiannidis, G.K. AnciNet: An efficient deep learning approach for feedback compression of estimated CSI in massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 2192–2196. [Google Scholar] [CrossRef]
- Guo, J.; Wen, C.K.; Jin, S. CAnet: Uplink-aided downlink channel acquisition in FDD massive MIMO using deep learning. arXiv 2021, arXiv:2101.04377. [Google Scholar] [CrossRef]
- Liu, Z.; Del Rosario, M.; Ding, Z. A markovian model-driven deep learning framework for massive MIMO CSI feedback. IEEE Trans. Wirel. Commun. 2021. [Google Scholar] [CrossRef]
- Fan, G.; Sun, J.; Gui, G.; Gacanin, H.; Adebisi, B.; Ohtsuki, T. Fully Convolutional Neural Network Based CSI Limited Feedback for FDD Massive MIMO Systems. IEEE Trans. Cogn. Commun. Netw. 2021. [Google Scholar] [CrossRef]
- Qing, C.; Cai, B.; Yang, Q.; Wang, J.; Huang, C. Deep learning for CSI feedback based on superimposed coding. IEEE Access 2019, 7, 93723–93733. [Google Scholar] [CrossRef]
- Zeng, J.; He, Z.; Sun, J.; Adebisi, B.; Gacanin, H.; Gui, G.; Adachi, F. Deep Transfer Learning for 5G Massive MIMO Downlink CSI Feedback. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March 2021; pp. 1–5. [Google Scholar]
- Zhang, Y.; Wang, J.; Sun, J.; Adebisi, B.; Gacanin, H.; Gui, G.; Adachi, F. CV-3DCNN: Complex-valued deep learning for CSI prediction in FDD massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 10, 266–270. [Google Scholar] [CrossRef]
- Han, Y.; Li, M.; Jin, S.; Wen, C.K.; Ma, X. Deep learning-based FDD non-stationary massive MIMO downlink channel reconstruction. IEEE J. Sel. Areas Commun. 2020, 38, 1980–1993. [Google Scholar] [CrossRef]
- He, H.; Wen, C.K.; Jin, S.; Li, G.Y. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems. IEEE Wirel. Commun. Lett. 2018, 7, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Feng, K. Precodernet: Hybrid beamforming for millimeter wave systems using deep reinforcement learning. arXiv 2019, arXiv:1907.13266. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, K.; Li, X.; Jin, S. PrecoderNet: Hybrid beamforming for millimeter wave systems with deep reinforcement learning. IEEE Wirel. Commun. Lett. 2020, 9, 1677–1681. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Alex, S.; Varkey, P.; Li, Y.; Qu, Q.; Tujkovic, D. Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access 2018, 6, 37328–37348. [Google Scholar] [CrossRef]
- Huang, H.; Song, Y.; Yang, J.; Gui, G.; Adachi, F. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh. Technol. 2019, 68, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A. DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications. arXiv 2019, arXiv:1902.06435. [Google Scholar]
- Arikawa, S.; Karasawa, Y. A simplified MIMO channel characteristics evaluation scheme based on ray tracing and its application to indoor radio systems. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1737–1740. [Google Scholar] [CrossRef]
- Klautau, A.; Batista, P.; González-Prelcic, N.; Wang, Y.; Heath, R.W. 5G MIMO data for machine learning: Application to beam-selection using deep learning. In Proceedings of the 2018 Information Theory and Applications Workshop (ITA), Rockland, ON, Canada, 30 May–2 June 2018; pp. 1–9. [Google Scholar]
- Dong, P.; Zhang, H.; Li, G.Y.; Gaspar, I.S.; NaderiAlizadeh, N. Deep CNN-based channel estimation for mmWave massive MIMO systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Zhang, H.; Li, G.Y.; NaderiAlizadeh, N.; Gaspar, I.S. Deep CNN for wideband mmWave massive MIMO channel estimation using frequency correlation. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 12–17 May 2019; pp. 4529–4533. [Google Scholar]
- Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Bao, X.; Feng, W.; Zheng, J.; Li, J. Deep CNN and equivalent channel based hybrid precoding for mmWave massive MIMO systems. IEEE Access 2020, 8, 19327–19335. [Google Scholar] [CrossRef]
- Sung, L.; Cho, D.H. Multi-User Hybrid Beamforming System Based on Deep Neural Network in Millimeter-Wave Communication. IEEE Access 2020, 8, 91616–91623. [Google Scholar] [CrossRef]
- Faragallah, O.S.; El-Sayed, H.S.; Mohamed, G. Performance Enhancement of MmWave MIMO Systems Using Deep Learning Framework. IEEE Access 2021, 9, 92460–92472. [Google Scholar] [CrossRef]
- Elbir, A.M. CNN-based precoder and combiner design in mmWave MIMO systems. IEEE Commun. Lett. 2019, 23, 1240–1243. [Google Scholar] [CrossRef]
- Elbir, A.M.; Papazafeiropoulos, A.K. Hybrid precoding for multiuser millimeter wave massive MIMO systems: A deep learning approach. IEEE Trans. Veh. Technol. 2019, 69, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mu, Y.; Liu, Y.; Zhang, T.; Qian, Y. Deep learning-based beamspace channel estimation in mmWave massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 2212–2215. [Google Scholar] [CrossRef]
- Wei, X.; Hu, C.; Dai, L. Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems. IEEE Trans. Commun. 2020, 69, 182–193. [Google Scholar] [CrossRef]
- Ma, W.; Qi, C.; Zhang, Z.; Cheng, J. Deep learning for compressed sensing based channel estimation in millimeter wave massive mimo. In Proceedings of the Sweden 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; pp. 1–6. [Google Scholar]
- He, H.; Wen, C.K.; Jin, S. Bayesian optimal data detector for hybrid mmWave MIMO-OFDM systems with low-resolution ADCs. IEEE J. Sel. Top. Signal Process. 2018, 12, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gursoy, M.C. Multi-Agent Double Deep Q-Learning for Beamforming in mmWave MIMO Networks. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, 31 August–3 September 2020; pp. 1–6. [Google Scholar]
- Abdallah, A.; Celik, A.; Mansour, M.M.; Eltawil, A.M. Deep Learning Based Frequency-Selective Channel Estimation for Hybrid mmWave MIMO Systems. arXiv 2021, arXiv:2102.10847. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, J.; Ai, B.; Zhang, X. Channel estimation for mmWave massive MIMO with convolutional blind denoising network. IEEE Commun. Lett. 2019, 24, 95–98. [Google Scholar] [CrossRef]
- Tang, H.; Wang, J.; He, L. Off-grid sparse bayesian learning-based channel estimation for mmwave massive mimo uplink. IEEE Wirel. Commun. Lett. 2018, 8, 45–48. [Google Scholar] [CrossRef]
- Mishra, A.; Rajoriya, A.; Jagannatham, A.K.; Ascheid, G. Sparse Bayesian learning-based channel estimation in millimeter wave hybrid MIMO systems. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 3–6 July 2017; pp. 1–5. [Google Scholar]
- Elbir, A.M.; Papazafeiropoulos, A.; Kourtessis, P.; Chatzinotas, S. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems. IEEE Wirel. Commun. Lett. 2020, 9, 1447–1451. [Google Scholar] [CrossRef]
- Lu, Q.; Lin, T.; Zhu, Y. Channel Estimation and Hybrid Precoding for Millimeter Wave Communications: A Deep Learning-Based Approach. IEEE Access 2021, 9, 120924–120939. [Google Scholar] [CrossRef]
- Song, N.; Ye, C.; Hu, X.; Yang, T. Deep Learning based Low-Rank Channel Recovery for Hybrid Beamforming in Millimeter-Wave Massive MIMO. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Naeem, M.; Bashir, S.; Ullah, Z.; Syed, A.A. A near optimal scheduling algorithm for efficient radio resource management in multi-user MIMO systems. Wirel. Pers. Commun. 2019, 106, 1411–1427. [Google Scholar] [CrossRef]
- Naeem, M.; Bashir, S.; Khan, M.U.; Syed, A.A. Modified SINR based user selection for MU-MIMO systems. In Proceedings of the 2015 International Conference on Information and Communication Technologies (ICICT), Karachi, Pakistan, 12-13 December 2015; pp. 1–4. [Google Scholar]
- Naeem, M.; Khan, M.U.; Bashir, S.; Syed, A.A. Modified leakage based user selection for MU-MIMO systems. In Proceedings of the 2015 13th International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 14–16 December 2015; pp. 320–323. [Google Scholar]
- Sanguinetti, L.; Zappone, A.; Debbah, M. Deep learning power allocation in massive MIMO. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1257–1261. [Google Scholar]
- Zhang, Y.; Kang, C.; Ma, T.; Teng, Y.; Guo, D. Power allocation in multi-cell networks using deep reinforcement learning. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–6. [Google Scholar]
- Mismar, F.B.; Evans, B.L. Deep learning in downlink coordinated multipoint in new radio heterogeneous networks. IEEE Wirel. Commun. Lett. 2019, 8, 1040–1043. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Lu, Z.; Wen, X.; Lei, T.; Hu, Z. AIF: An artificial intelligence framework for smart wireless network management. IEEE Commun. Lett. 2017, 22, 400–403. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Y.; Dai, C.; Dai, H.; Poor, H.V. Reinforcement learning-based NOMA power allocation in the presence of smart jamming. IEEE Trans. Veh. Technol. 2017, 67, 3377–3389. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, G.; Li, G.; Zhang, J. A Deep Q-Network Based-Resource Allocation Scheme for Massive MIMO-NOMA. IEEE Commun. Lett. 2021, 25, 1544–1548. [Google Scholar] [CrossRef]
- Van Chien, T. Spatial Resource Allocation in Massive MIMO Communications: From Cellular to Cell-Free; Linköping University Electronic Press: Linköping, Sweden, 2019; Volume 2036. [Google Scholar]
- Cui, W.; Shen, K.; Yu, W. Spatial deep learning for wireless scheduling. IEEE J. Sel. Areas Commun. 2019, 37, 1248–1261. [Google Scholar] [CrossRef] [Green Version]
- Van Chien, T.; Canh, T.N.; Bjornson, E.; Larsson, E.G. Power control in cellular massive MIMO with varying user activity: A deep learning solution. IEEE Trans. Wirel. Commun. 2020, 19, 5732–5748. [Google Scholar] [CrossRef]
- Van Chien, T.; Bjornson, E.; Larsson, E.G. Sum spectral efficiency maximization in massive MIMO systems: Benefits from deep learning. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Xia, W.; Zheng, G.; Zhu, Y.; Zhang, J.; Wang, J.; Petropulu, A.P. A deep learning framework for optimization of MISO downlink beamforming. IEEE Trans. Commun. 2019, 68, 1866–1880. [Google Scholar] [CrossRef]
- Xia, W.; Zheng, G.; Zhu, Y.; Zhang, J.; Wang, J.; Petropulu, A.P. Deep learning based beamforming neural networks in downlink MISO systems. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 22–24 May 2019; pp. 1–5. [Google Scholar]
- Yang, Y.; Li, Y.; Li, K.; Zhao, S.; Chen, R.; Wang, J.; Ci, S. DECCO: Deep-learning enabled coverage and capacity optimization for massive MIMO systems. IEEE Access 2018, 6, 23361–23371. [Google Scholar] [CrossRef]
- Zappone, A.; Sanguinetti, L.; Debbah, M. User association and load balancing for massive MIMO through deep learning. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1262–1266. [Google Scholar]
- Kim, K.; Lee, J.; Choi, J. Deep learning based pilot allocation scheme (DL-PAS) for 5G massive MIMO system. IEEE Commun. Lett. 2018, 22, 828–831. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kliks, A.; Kryszkiewicz, P.; Koudouridis, G.P. A Reinforcement Learning Approach for Base Station On/Off Switching in Heterogeneous M-MIMO Networks. In Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 31 August–3 September 2020; pp. 170–172. [Google Scholar]
- Wijaya, M.A.; Fukawa, K.; Suzuki, H. Intercell-interference cancellation and neural network transmit power optimization for MIMO channels. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar]
- Ji, X.; Jin, M.; Liu, W.; Xu, Z. Inter-Cell Interference Suppression for MIMO-OFDM Systems Based on Complex-Valued Neural Network. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- Maksymyuk, T.; Gazda, J.; Yaremko, O.; Nevinskiy, D. Deep learning based massive MIMO beamforming for 5G mobile network. In Proceedings of the 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS), Dortmund, Germany, 20–21 September 2018; pp. 241–244. [Google Scholar]
- Carpi, F.; Häger, C.; Martalò, M.; Raheli, R.; Pfister, H.D. Reinforcement learning for channel coding: Learned bit-flipping decoding. In Proceedings of the 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 24–27 September 2019; pp. 922–929. [Google Scholar]
- Gruber, T.; Cammerer, S.; Hoydis, J.; ten Brink, S. On deep learning-based channel decoding. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar]
- Liang, F.; Shen, C.; Wu, F. An iterative BP-CNN architecture for channel decoding. IEEE J. Sel. Top. Signal Process. 2018, 12, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W.J.; Burshtein, D.; Be’ery, Y. Deep learning methods for improved decoding of linear codes. IEEE J. Sel. Top. Signal Process. 2018, 12, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.M.; Kim, I.M.; Chun, C.J. Deep learning-based MIMO-NOMA with imperfect SIC decoding. IEEE Syst. J. 2019, 14, 3414–3417. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Gomes, P.H.; Krishnamachari, B. Deep reinforcement learning for dynamic multichannel access in wireless networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 257–265. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, T.J.; Erpek, T.; Clancy, T.C. Physical layer deep learning of encodings for the MIMO fading channel. In Proceedings of the 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 3–6 October 2017; pp. 76–80. [Google Scholar]
- O’Shea, T.J.; Erpek, T.; Clancy, T.C. Deep learning based MIMO communications. arXiv 2017, arXiv:1707.07980. [Google Scholar]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Dörner, S.; Cammerer, S.; Yan, S.; Hoydis, J.; Brink, S.t. Enabling FDD massive MIMO through deep learning-based channel prediction. arXiv 2019, arXiv:1901.03664. [Google Scholar]
- Booth, J. Proof-of-Concept Prototype of Deep Learning Based Channel Mapping Using an Autonomous Channel Measurement System. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2020. [Google Scholar]
- Bai, L.; Wang, C.X.; Huang, J.; Xu, Q.; Yang, Y.; Goussetis, G.; Sun, J.; Zhang, W. Predicting wireless mmWave massive MIMO channel characteristics using machine learning algorithms. Wirel. Commun. Mob. Comput. 2018, 2018, 9783863. [Google Scholar] [CrossRef]
- Fujihashi, T.; Koike-Akino, T.; Watanabe, T.; Orlik, P.V. Nonlinear equalization with deep learning for multi-purpose visual MIMO communications. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Cui, Y.; Li, S.; Zhang, W. Jointly sparse signal recovery and support recovery via deep learning with applications in MIMO-based grant-free random access. IEEE J. Sel. Areas Commun. 2020, 39, 788–803. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Zhang, H.; Xiao, G. Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 611–622. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Z.; Sun, Y. Universal neural network control of MIMO uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1163–1169. [Google Scholar] [CrossRef]
- Chen, M.; Ge, S.S.; How, B.V.E. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 2010, 21, 796–812. [Google Scholar] [CrossRef]
- Yuan, R.; Tan, X.; Fan, G.; Yi, J. Robust adaptive neural network control for a class of uncertain nonlinear systems with actuator amplitude and rate saturations. Neurocomputing 2014, 125, 72–80. [Google Scholar] [CrossRef]
- Chen, M.; Shao, S.Y.; Jiang, B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 2017, 47, 3110–3123. [Google Scholar] [CrossRef] [PubMed]
- Kostarigka, A.K.; Rovithakis, G.A. Adaptive dynamic output feedback neural network control of uncertain MIMO nonlinear systems with prescribed performance. IEEE Trans. Neural Netw. Learn. Syst. 2011, 23, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liang, M.; Chai, Y. Adaptive neural network control of a class of fractional order uncertain nonlinear MIMO systems with input constraints. Complexity 2019, 2019, 1410278. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, Z.; Chen, C.P. Adaptive neural control of uncertain MIMO nonlinear systems with state and input constraints. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 1318–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, M.; Ong, C.J.; Chen, P.C. Adaptive neural network control of uncertain MIMO nonlinear systems with input saturation. Neural Comput. Appl. 2016, 27, 1317–1325. [Google Scholar] [CrossRef]
- Wang, C.; Lin, Y. Robust adaptive neural control for a class of uncertain MIMO nonlinear systems. Int. J. Syst. Sci. 2015, 46, 1934–1943. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, W.; Chen, L.; Zhou, F.; Zhu, F.; Fan, L. An adaptive deep learning-based UAV receiver design for coded MIMO with correlated noise. Phys. Commun. 2021, 47, 101365. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Balevi, E.; Andrews, J.G. Deep learning-based channel estimation for high-dimensional signals. arXiv 2019, arXiv:1904.09346. [Google Scholar]
- Safari, M.S.; Pourahmadi, V.; Sodagari, S. Deep UL2DL: Channel knowledge transfer from uplink to downlink. arXiv 2018, arXiv:1812.07518. [Google Scholar]
- Zhang, Q.; Zhang, M.; Chen, T.; Sun, Z.; Ma, Y.; Yu, B. Recent advances in convolutional neural network acceleration. Neurocomputing 2019, 323, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Ding, C.; Liao, S.; Wang, Y.; Li, Z.; Liu, N.; Zhuo, Y.; Wang, C.; Qian, X.; Bai, Y.; Yuan, G.; et al. Circnn: Accelerating and compressing deep neural networks using block-circulant weight matrices. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, MA, USA, 14–18 October 2017; pp. 395–408. [Google Scholar]
- He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397. [Google Scholar]
- Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv 2014, arXiv:1405.3866. [Google Scholar]
- Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015; pp. 161–170. [Google Scholar]
- Park, H.; Kim, D.; Ahn, J.; Yoo, S. Zero and data reuse-aware fast convolution for deep neural networks on GPU. In Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, 1–7 October 2016; pp. 1–10. [Google Scholar]
Period | Number of Papers |
---|---|
2010 to 2012 | 4 |
2013 to 2015 | 7 |
2016 to 2018 | 51 |
2019 to August 2021 | 148 |
Category | Paper-1 | Paper-2 | Paper-3 | Paper-4 | Paper-5 |
---|---|---|---|---|---|
Detection, Classification, and Compression | [81] | [103] | [75] | [82] | [76] |
Channel Estimation | [120] | [285] | [144] | [129] | [124] |
mmWave Communication | [228] | [232] | [231] | [233] | [236] |
Positioning, Sensing, and Localization | [188] | [166] | [169] | [172] | [173] |
Resource allocation | [266] | [262] | [268] | [273] | [277] |
CSI acquisition, Security and Robustness | [200] | [194] | [196] | [199] | [193] |
Miscellaneous | [294] | [279] | [281] | [136] | [283] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; De Pietro, G.; Coronato, A. Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems. Sensors 2022, 22, 309. https://doi.org/10.3390/s22010309
Naeem M, De Pietro G, Coronato A. Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems. Sensors. 2022; 22(1):309. https://doi.org/10.3390/s22010309
Chicago/Turabian StyleNaeem, Muddasar, Giuseppe De Pietro, and Antonio Coronato. 2022. "Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems" Sensors 22, no. 1: 309. https://doi.org/10.3390/s22010309
APA StyleNaeem, M., De Pietro, G., & Coronato, A. (2022). Application of Reinforcement Learning and Deep Learning in Multiple-Input and Multiple-Output (MIMO) Systems. Sensors, 22(1), 309. https://doi.org/10.3390/s22010309