Industry 4.0: A Proposal of Paradigm Organization Schemes from a Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Metadata Extraction for Analysis
3. Bibliometric Analysis
3.1. Summary of Information Selection
3.2. Geographical Distribution of Scientific Information
3.3. Chronology of Scientific Information
3.4. Keywords Most Frequently Used
3.5. Contribution Per Journal
3.6. Language of References
4. Results and Discussion
- Searching for and obtaining useful information.
- The preparation, review, and transcription of information.
- The organization of information and data according to criteria.
- The categorization, labeling and coding of information and data, which prepares them for analysis.
- The analysis of the data and the generation of propositions, usefulness, examples, and conclusions.
4.1. Criteria and Paradigms of Industry 4.0 Reorganized
4.2. CSCW Matrix for Industry 4.0 Paradigms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IMD World Digital. IMD World Digital Competitiveness Ranking 2021. IMD World Compet. Available online: https://www.imd.org/globalassets/wcc/docs/release-2021/digital_2021.pdf (accessed on 29 September 2021).
- Narula, S.; Puppala, H.; Kumar, A.; Frederico, G.F.; Dwivedy, M.; Prakash, S.; Talwar, V. Applicability of industry 4.0 technologies in the adoption of global reporting initiative standards for achieving sustainability. J. Clean Prod. 2021, 305, 127141. [Google Scholar] [CrossRef]
- Barros, T.; Muñuzuri, J. La industria 4.0: Aplicaciones e Implicaciones. Master’s Thesis, The University of Seville, Seville, Spain, 2017; pp. 1–52. [Google Scholar]
- Bartodziej, C.J. Technologies and functions of the concept Industry 4.0. In The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; pp. 51–78. ISBN 978-3-658-16502-4. [Google Scholar]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The industrial management of SMEs in the era of Industry 4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [Google Scholar] [CrossRef] [Green Version]
- Rojko, A. Industry 4.0 concept: Background and overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 7543. [Google Scholar] [CrossRef] [Green Version]
- Stachová, K.; Papula, J.; Stacho, Z.; Kohnová, L. External partnerships in employee education and development as the key to facing industry 4.0 challenges. Sustainability 2019, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Ignacio, J.; Osma, P.; Leandro, F.; Salazar, M.; Natalia, K.; Gómez, M. Knowledge Management and Industry 4.0 and Open Innovation. Rev. Ing. Solidar. 2020, 16, 2. [Google Scholar] [CrossRef]
- Yun, J.J.; Liu, Z. Micro- and Macro-Dynamics of Open Innovation with a Quadruple-Helix Model. Sustainability 2019, 11, 3301. [Google Scholar] [CrossRef] [Green Version]
- Vila, C.; Ugarte, D.; Ríos, J.; Abellán, J.V. Project-based collaborative engineering learning to develop Industry 4.0 skills within a PLM framework. Procedia Manuf. 2017, 13, 1269–1276. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M.; Iranmanesh, M.; Maroufkhani, P.; Morales, M.E. Industry 4.0 ten years on: A bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. J. Clean. Prod. 2021, 302, 127052. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- O’Donovan, P.; Gallagher, C.; Bruton, K.; O’Sullivan, D.T.J. A fog computing industrial cyber-physical system for embedded low-latency machine learning Industry 4.0 applications. Manuf. Lett. 2018, 15, 139–142. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Díaz-Bouza, M.A. A fog computing based cyber-physical system for the automation of pipe-related tasks in the industry 4.0 shipyard. Sensors 2018, 18, 1961. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, F.I.J.; Barrionuevo, J.M.J. Cyber-physical system for quality control of spur gears through artificial vision techniques. In Proceedings of the 2019 IEEE Fourth Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 11–15 November 2019; pp. 3–8. [Google Scholar] [CrossRef]
- Kim, S.; Park, S. CPS(Cyber Physical System) based Manufacturing System Optimization. Procedia Comput. Sci. 2017, 122, 518–524. [Google Scholar] [CrossRef]
- O’Donovan, P.; Gallagher, C.; Leahy, K.; O’Sullivan, D.T.J. A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications. Comput. Ind. 2019, 110, 12–35. [Google Scholar] [CrossRef]
- Ajayi, O.J.; Rafferty, J.; Santos, J.; Garcia-Constantino, M.; Cui, Z. BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems. IoT 2021, 2, 610–632. [Google Scholar] [CrossRef]
- Mouromtsev, D. Semantic Reference Model for Individualization of Information Processes in IoT Heterogeneous Environment. Electronics 2021, 10, 2523. [Google Scholar] [CrossRef]
- Mecca, G.; Santomauro, M.; Santoro, D.; Veltri, E. IoT Helper: A Lightweight and Extensible Framework for Fast-Prototyping IoT Architectures. Appl. Sci. 2021, 11, 9670. [Google Scholar] [CrossRef]
- França, C.M.; Couto, R.S.; Velloso, P.B. Missing Data Imputation in Internet of Things Gateways. Information 2021, 12, 425. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, C.-C.; Chang, M.-L.; Lin, W.-T.; Lin, P.-A.; Lee, C.-C.; Tsui, Z.-L. Using a Flexible IoT Architecture and Sequential AI Model to Recognize and Predict the Production Activities in the Labor-Intensive Manufacturing Site. Electronics 2021, 10, 2540. [Google Scholar] [CrossRef]
- Wytrębowicz, J.; Cabaj, K.; Krawiec, J. Messaging Protocols for IoT Systems—A Pragmatic Comparison. Sensors 2021, 21, 6904. [Google Scholar] [CrossRef]
- Goworko, M.; Wytrębowicz, J. A Secure Communication System for Constrained IoT Devices—Experiences and Recommendations. Sensors 2021, 21, 6906. [Google Scholar] [CrossRef] [PubMed]
- Luong, N.C.; Hoang, D.T.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Data Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2546–2590. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.A.; Pérez, M.R.; Trujillo, L.C. IoT Paradigm into the Smart City Vision: A Survey. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 695–704. [Google Scholar]
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Jeschke, S.; Brecher, C.; Meisen, T.; Özdemir, D.; Eschert, T. Industrial Internet of Things and Cyber Manufacturing Systems. In Industrial Internet of Things: Cybermanufacturing Systems; Jeschke, S., Brecher, C., Song, H., Rawat, D.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–19. ISBN 978-3-319-42559-7. [Google Scholar]
- Gartner. Leading the IoT—Gartner Insights on How to Lead in a Connected World; Gartner: Stamford, CT, USA, 2017; ISBN 0004-0002. Available online: https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf (accessed on 12 February 2021).
- Ganchev, I.; Ji, Z.; O’Droma, M. A generic IoT architecture for smart cities. In Proceedings of the 25th IET Irish Signals Systems Conference 2014 and 2014 China-Ireland International Conference on Information and Communications Technologies (ISSC 2014/CIICT 2014), Limerick, Ireland, 26–27 June 2014; pp. 196–199. [Google Scholar]
- Grønbæk, I. Architecture for the Internet of Things (IoT): API and Interconnect. In Proceedings of the 2008 Second International Conference on Sensor Technologies and Applications (Sensorcomm 2008), Cap Esterel, France, 25–31 August 2008; pp. 802–807. [Google Scholar]
- Munirathinam, S. Industry 4.0: Industrial Internet of Things (IIOT), 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 117, ISBN 9780128187562. [Google Scholar]
- Industrial Internet of Things (IIoT)—Definition—Trend Micro USA. Available online: https://www.trendmicro.com/vinfo/us/security/definition/industrial-internet-of-things-iiot (accessed on 6 November 2020).
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Corallo, A.; Lazoi, M.; Lezzi, M. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. Comput. Ind. 2020, 114, 103165. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, L. Da Internet of things (IoT) cybersecurity research: A review of current research topics. IEEE Internet Things J. 2019, 6, 2103–2115. [Google Scholar] [CrossRef]
- Bordel, B.; Alcarria, R.; Sánchez-de-Rivera, D.; Robles, T. Protecting industry 4.0 systems against the malicious effects of cyber-physical attacks. In International Conference on Ubiquitous Computing and Ambient Intelligence; Springer: Berlin/Heidelberg, Germany, 2017; pp. 161–171. [Google Scholar] [CrossRef]
- Ashibani, Y.; Mahmoud, Q.H. Cyber physical systems security: Analysis, challenges and solutions. Comput. Secur. 2017, 68, 81–97. [Google Scholar] [CrossRef]
- Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight searchable public-key encryption for cloud-assisted wireless sensor networks. IEEE Trans. Ind. Inform. 2018, 14, 3712–3723. [Google Scholar] [CrossRef]
- Khalid, A.; Kirisci, P.; Khan, Z.H.; Ghrairi, Z.; Thoben, K.D.; Pannek, J. Security framework for industrial collaborative robotic cyber-physical systems. Comput. Ind. 2018, 97, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput. Ind. 2018, 103, 97–110. [Google Scholar] [CrossRef]
- Urquhart, L.; McAuley, D. Avoiding the internet of insecure industrial things. Comput. Law Secur. Rev. 2018, 34, 450–466. [Google Scholar] [CrossRef]
- Lee, I. Cybersecurity: Risk management framework and investment cost analysis. Bus. Horiz. 2021, 64, 659–671. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Zolfaghari, B.; Azmoodeh, A.; Dehghantanha, A.; Karimipour, H.; Fraser, E.; Green, A.G.; Russell, C.; Duncan, E. A Review on Security of Smart Farming and Precision Agriculture: Security Aspects, Attacks, Threats and Countermeasures. Appl. Sci. 2021, 11, 7518. [Google Scholar] [CrossRef]
- Paredes, C.M.; Martínez-Castro, D.; Ibarra-Junquera, V.; González-Potes, A. Detection and Isolation of DoS and Integrity Cyber Attacks in Cyber-Physical Systems with a Neural Network-Based Architecture. Electronics 2021, 10, 2238. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Sahri, N.M.; Karie, N.M.; Ahmed, M.; Valli, C. Biometrics for Internet-of-Things Security: A Review. Sensors 2021, 21, 6163. [Google Scholar] [CrossRef] [PubMed]
- Krause, T.; Ernst, R.; Klaer, B.; Hacker, I.; Henze, M. Cybersecurity in Power Grids: Challenges and Opportunities. Sensors 2021, 21, 6225. [Google Scholar] [CrossRef] [PubMed]
- Northern, B.; Burks, T.; Hatcher, M.; Rogers, M.; Ulybyshev, D. VERCASM-CPS: Vulnerability Analysis and Cyber Risk Assessment for Cyber-Physical Systems. Information 2021, 12, 408. [Google Scholar] [CrossRef]
- Oussous, A.; Benjelloun, F.Z.; Ait Lahcen, A.; Belfkih, S. Big Data technologies: A survey. J. King Saud Univ.—Comput. Inf. Sci. 2018, 30, 431–448. [Google Scholar] [CrossRef]
- Coda, F.A.; Salles, R.M.D.; Junqueira, F.; Filho, D.J.S.; Silva, J.R.; Miyagi, P.E. Big data systems requirements for Industry 4.0. In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12–14 November 2018; pp. 1230–1236. [Google Scholar] [CrossRef]
- Yin, S.; Kaynak, O. Big Data for Modern Industry: Challenges and Trends. Proc. IEEE 2015, 103, 143–146. [Google Scholar] [CrossRef]
- Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance. IEEE Access 2017, 5, 23484–23491. [Google Scholar] [CrossRef]
- Shobana, V.; Kumar, N. Big data—A review. Int. J. Appl. Eng. Res. 2015, 10, 1294–1298. [Google Scholar]
- Philip Chen, C.L.; Zhang, C.Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 2014, 275, 314–347. [Google Scholar] [CrossRef]
- Lopez-Miguel, I.D. Survey on Preprocessing Techniques for Big Data Projects. Eng. Proc. 2021, 7, 14. [Google Scholar] [CrossRef]
- Lafuente-Lechuga, M.; Cifuentes-Faura, J.; Faura-Martínez, U. Sustainability, Big Data and Mathematical Techniques: A Bibliometric Review. Mathematics 2021, 9, 2557. [Google Scholar] [CrossRef]
- Alhameli, F.; Ahmadian, A.; Elkamel, A. Multiscale Decision-Making for Enterprise-Wide Operations Incorporating Clustering of High-Dimensional Attributes and Big Data Analytics: Applications to Energy Hub. Energies 2021, 14, 6682. [Google Scholar] [CrossRef]
- Pilloni, V. How data will transform industrial processes: Crowdsensing, crowdsourcing and big data as pillars of industry 4.0. Future Internet 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Reis, M.S.; Gins, G. Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis. Processes 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Kostakis, P.; Kargas, A. Big-Data Management: A Driver for Digital Transformation? Information 2021, 12, 411. [Google Scholar] [CrossRef]
- Cofre-Martel, S.; Droguett, E.L.; Modarres, M. Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management. Sensors 2021, 21, 6841. [Google Scholar] [CrossRef]
- Oprea, S.-V.; Bâra, A.; Puican, F.C.; Radu, I.C. Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption. Sustainability 2021, 13, 10963. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z.; Gao, F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52, 3543–3562. [Google Scholar] [CrossRef]
- Weese, M.; Martinez, W.; Megahed, F.M.; Jones-Farmer, L.A. Statistical Learning Methods Applied to Process Monitoring: An Overview and Perspective. J. Qual. Technol. 2016, 48, 4–24. [Google Scholar] [CrossRef]
- Qin, S.J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control 2012, 36, 220–234. [Google Scholar] [CrossRef]
- Xu, L.D.; Duan, L. Big data for cyber physical systems in industry 4.0: A survey. Enterp. Inf. Syst. 2019, 13, 148–169. [Google Scholar] [CrossRef]
- Lidong, W.; Guanghui, W. Big Data in Cyber-Physical Systems, Digital Manufacturing and Industry 4.0. Int. J. Eng. Manuf. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Wu, X.; Xu, X.; Dou, W. Big data challenges and opportunities in the hype of Industry 4.0. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Abbas, H.; Shaheen, S. Future SCADA challenges and the promising solution: The agent-based SCADA. Int. J. Crit. Infrastruct. 2014, 10, 307–333. [Google Scholar] [CrossRef]
- Li, G.; Tan, J.; Chaudhry, S.S. Industry 4.0 and big data innovations. Enterp. Inf. Syst. 2019, 13, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Yildiz, E.; Møller, C.; Bilberg, A. Virtual Factory: Digital Twin Based Integrated Factory Simulations. Procedia CIRP 2020, 93, 216–221. [Google Scholar] [CrossRef]
- Garg, G.; Kuts, V.; Anbarjafari, G. Digital Twin for FANUC Robots: Industrial Robot Programming and Simulation Using Virtual Reality. Sustainability 2021, 13, 10336. [Google Scholar] [CrossRef]
- Augustyn, D.; Ulriksen, M.D.; Sørensen, J.D. Reliability Updating of Offshore Wind Substructures by Use of Digital Twin Information. Energies 2021, 14, 5859. [Google Scholar] [CrossRef]
- Falekas, G.; Karlis, A. Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects. Energies 2021, 14, 5933. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zou, Y.; Zhou, T.; Zhang, X.; Xu, Z. Energy Consumption Prediction of Electric Vehicles Based on Digital Twin Technology. World Electr. Veh. J. 2021, 12, 160. [Google Scholar] [CrossRef]
- Huo, Y.; Yang, A.; Jia, Q.; Chen, Y.; He, B.; Li, J. Efficient Visualization of Large-Scale Oblique Photogrammetry Models in Unreal Engine. ISPRS Int. J. Geo-Inform. 2021, 10, 643. [Google Scholar] [CrossRef]
- Vidal-Balea, A.; Blanco-Novoa, O.; Fraga-Lamas, P.; Vilar-Montesinos, M.; Fernández-Caramés, T.M. Collaborative Augmented Digital Twin: A Novel Open-Source Augmented Reality Solution for Training and Maintenance Processes in the Shipyard of the Future. Eng. Proc. 2021, 7, 10. [Google Scholar] [CrossRef]
- Yasin, A.; Pang, T.Y.; Cheng, C.-T.; Miletic, M. A Roadmap to Integrate Digital Twins for Small and Medium-Sized Enterprises. Appl. Sci. 2021, 11, 9479. [Google Scholar] [CrossRef]
- Tu, X.; Autiosalo, J.; Jadid, A.; Tammi, K.; Klinker, G. A Mixed Reality Interface for a Digital Twin Based Crane. Appl. Sci. 2021, 11, 9480. [Google Scholar] [CrossRef]
- Fathy, Y.; Jaber, M.; Nadeem, Z. Digital Twin-Driven Decision Making and Planning for Energy Consumption. J. Sens. Actuator Netw. 2021, 10, 37. [Google Scholar] [CrossRef]
- Hänel, A.; Seidel, A.; Frieß, U.; Teicher, U.; Wiemer, H.; Wang, D.; Wenkler, E.; Penter, L.; Hellmich, A.; Ihlenfeldt, S. Digital Twins for High-Tech Machining Applications—A Model-Based Analytics-Ready Approach. J. Manuf. Mater. Process. 2021, 5, 80. [Google Scholar] [CrossRef]
- Nee, A.Y.C.; Ong, S.K. Special Issue on Digital Twins in Industry. Appl. Sci. 2021, 11, 6437. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M. Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing. IEEE Access 2017, 5, 20418–20427. [Google Scholar] [CrossRef]
- Velásquez, N.; Estevez, E.; Pesado, P. Cloud Computing, Big Data and the Industry 4.0 Reference Architectures. J. Comput. Sci. Technol. 2018, 18, e29. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Fraga-Lamas, P.; Suárez-Albela, M.; Vilar-Montesinos, M. A fog computing and cloudlet based augmented reality system for the industry 4.0 shipyard. Sensors 2018, 18, 1798. [Google Scholar] [CrossRef] [Green Version]
- Aazam, M.; Zeadally, S.; Harras, K.A. Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Trans. Ind. Inform. 2018, 14, 4674–4682. [Google Scholar] [CrossRef]
- Fog Computing: La Nube se Prepara para el Internet de las Cosas—IONOS. Available online: https://www.ionos.es/digitalguide/servidores/know-how/fog-computing/ (accessed on 15 August 2021).
- Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud computing and Internet of Things: A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Yang, C.; Lan, S.; Shen, W.; Wang, L.; Huang, G.Q. Software-defined Cloud Manufacturing with Edge Computing for Industry 4.0. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1618–1623. [Google Scholar] [CrossRef]
- Sittón-Candanedo, I.; Alonso, R.S.; Rodríguez-González, S.; García Coria, J.A.; De La Prieta, F. Edge Computing Architectures in Industry 4.0: A General Survey and Comparison. In Proceedings of the 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019), Seville, Spain, 13–15 May 2020; Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 121–131. [Google Scholar]
- Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition of Fog Computing. SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32. [Google Scholar] [CrossRef]
- Trinks, S. Edge Computing architecture to support Real Time Analytic applications. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2930–2939. [Google Scholar]
- Zhou, X.; Ke, R.; Yang, H.; Liu, C. When Intelligent Transportation Systems Sensing Meets Edge Computing: Vision and Challenges. Appl. Sci. 2021, 11, 9680. [Google Scholar] [CrossRef]
- Kjorveziroski, V.; Filiposka, S.; Trajkovik, V. IoT Serverless Computing at the Edge: A Systematic Mapping Review. Computers 2021, 10, 130. [Google Scholar] [CrossRef]
- Peyman, M.; Copado, P.J.; Tordecilla, R.D.; Martins, L.d.C.; Xhafa, F.; Juan, A.A. Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems. Energies 2021, 14, 6309. [Google Scholar] [CrossRef]
- Xu, R.; Hang, L.; Jin, W.; Kim, D. Distributed Secure Edge Computing Architecture Based on Blockchain for Real-Time Data Integrity in IoT Environments. Actuators 2021, 10, 197. [Google Scholar] [CrossRef]
- Stan, O.P.; Enyedi, S.; Corches, C.; Flonta, S.; Stefan, I.; Gota, D.; Miclea, L. Method to Increase Dependability in a Cloud-Fog-Edge Environment. Sensors 2021, 21, 4714. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Williams, A.; Garg, L.; Savaglio, C.; Bawa, S. Cloud and Edge Computing-Based Computer Forensics: Challenges and Open Problems. Electronics 2021, 10, 1229. [Google Scholar] [CrossRef]
- Jalowiczor, J.; Rozhon, J.; Voznak, M. Study of the Efficiency of Fog Computing in an Optimized LoRaWAN Cloud Architecture. Sensors 2021, 21, 3159. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Yoo, S.; Kim, Y. Edge/Fog Computing Technologies for IoT Infrastructure. Sensors 2021, 21, 3001. [Google Scholar] [CrossRef]
- Wang, X.; Wan, J. Cloud-Edge Collaboration-Based Knowledge Sharing Mechanism for Manufacturing Resources. Appl. Sci. 2021, 11, 3188. [Google Scholar] [CrossRef]
- Mijuskovic, A.; Chiumento, A.; Bemthuis, R.; Aldea, A.; Havinga, P. Resource Management Techniques for Cloud/Fog and Edge Computing: An Evaluation Framework and Classification. Sensors 2021, 21, 1832. [Google Scholar] [CrossRef]
- Hamdan, S.; Ayyash, M.; Almajali, S. Edge-Computing Architectures for Internet of Things Applications: A Survey. Sensors 2020, 20, 6441. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Yoo, A.; Moon, C. Design and Implementation of Edge-Fog-Cloud System through HD Map Generation from LiDAR Data of Autonomous Vehicles. Electronics 2020, 9, 2084. [Google Scholar] [CrossRef]
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- Choi, J.; Ahn, S. Optimal Service Provisioning for the Scalable Fog/Edge Computing Environment. Sensors 2021, 21, 1506. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, J.; Aldossary, M. Modeling and Analyzing Offloading Strategies of IoT Applications over Edge Computing and Joint Clouds. Symmetry 2021, 13, 402. [Google Scholar] [CrossRef]
- Next Generation Mobile Networks Alliance 5G Initiative 5G White Paper. 2015. Available online: https://www.ngmn.org/work-programme/5g-white-paper.html (accessed on 6 November 2020).
- Wang, K.; Yu, F.R.; Li, H. Information-Centric Virtualized Cellular Networks With Device-to-Device Communications. IEEE Trans. Veh. Technol. 2016, 65, 9319–9329. [Google Scholar] [CrossRef]
- Muller, M.; Behnke, D.; Bok, P.B.; Peuster, M.; Schneider, S.; Karl, H. 5G as key technology for networked factories: Application of vertical-specific network services for enabling flexible smart manufacturing. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; pp. 1495–1500. [Google Scholar] [CrossRef]
- Doppler, K.; Rinne, M.; Wijting, C.; Ribeiro, C.B.; Hugl, K. Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 2009, 47, 42–49. [Google Scholar] [CrossRef]
- Rodriguez, I.; Mogensen, R.S.; Fink, A.; Raunholt, T.; Markussen, S.; Christensen, P.H.; Berardinelli, G.; Mogensen, P.; Schou, C.; Madsen, O. An Experimental Framework for 5G Wireless System Integration into Industry 4.0 Applications. Energies 2021, 14, 4444. [Google Scholar] [CrossRef]
- Silva, M.M.D.; Guerreiro, J. On the 5G and Beyond. Appl. Sci. 2020, 10, 7091. [Google Scholar] [CrossRef]
- Fanibhare, V.; Sarkar, N.I.; Al-Anbuky, A. A Survey of the Tactile Internet: Design Issues and Challenges, Applications, and Future Directions. Electronics 2021, 10, 2171. [Google Scholar] [CrossRef]
- Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G support for Industrial IoT Applications—Challenges, Solutions, and Research gaps. Sensors 2020, 20, 828. [Google Scholar] [CrossRef] [Green Version]
- Khatib, E.J.; Barco, R. Optimization of 5G Networks for Smart Logistics. Energies 2021, 14, 1758. [Google Scholar] [CrossRef]
- Segura, D.; Khatib, E.J.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [Google Scholar] [CrossRef]
- Alkinani, M.H.; Almazroi, A.A.; Jhanjhi, N.Z.; Khan, N.A. 5G and IoT Based Reporting and Accident Detection (RAD) System to Deliver First Aid Box Using Unmanned Aerial Vehicle. Sensors 2021, 21, 6905. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, M.; Zhuang, L. Highly Efficient Spatial–Temporal Correlation Basis for 5G IoT Networks. Sensors 2021, 21, 6899. [Google Scholar] [CrossRef] [PubMed]
- Kropp, A.; Schmoll, R.S.; Nguyen, G.T.; Fitzek, F.H.P. Demonstration of a 5G Multi-access Edge Cloud Enabled Smart Sorting Machine for Industry 4.0. In Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019. [Google Scholar] [CrossRef]
- Shi, Y.; Han, Q.; Shen, W.; Zhang, H. Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collab. Intell. Manuf. 2019, 1, 109–116. [Google Scholar] [CrossRef]
- Ambika, P. Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT). In Advances in Computers; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 117, pp. 321–338. ISBN 9780128187562. [Google Scholar]
- Data Clustering Algorithms—k-Means Clustering Algorithm. Available online: https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm (accessed on 16 November 2020).
- Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Sharma, R.; Vaseem Akram, S.; Gehlot, A.; Buddhi, D.; Malik, P.K.; Arya, R. Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning. Saf. Sci. 2021, 143, 105407. [Google Scholar] [CrossRef]
- Parto, M.; Saldana, C.; Kurfess, T. A Novel Three-Layer IoT Architecture for Shared, Private, Scalable, and Real-time Machine Learning from Ubiquitous Cyber-Physical Systems. Procedia Manuf. 2020, 48, 959–967. [Google Scholar] [CrossRef]
- Lee, J.; Davari, H.; Singh, J.; Pandhare, V. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manuf. Lett. 2018, 18, 20–23. [Google Scholar] [CrossRef]
- Ayvaz, S.; Alpay, K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Syst. Appl. 2021, 173, 114598. [Google Scholar] [CrossRef]
- Ansari, F.; Erol, S.; Sihn, W. Rethinking Human-Machine Learning in Industry 4.0: How Does the Paradigm Shift Treat the Role of Human Learning? Procedia Manuf. 2018, 23, 117–122. [Google Scholar] [CrossRef]
- Kanawaday, A.; Sane, A. Machine learning for predictive maintenance of industrial machines using IoT sensor data. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 87–90. [Google Scholar] [CrossRef]
- Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [Google Scholar] [CrossRef] [Green Version]
- Brik, B.; Bettayeb, B.; Sahnoun, M.; Duval, F. Towards Predicting System Disruption in Industry 4.0: Machine Learning-Based Approach. Procedia Comput. Sci. 2019, 151, 667–674. [Google Scholar] [CrossRef]
- Fahle, S.; Prinz, C.; Kuhlenkötter, B. Systematic review on machine learning (ML) methods for manufacturing processes—Identifying artificial intelligence (AI) methods for field application. Procedia CIRP 2020, 93, 413–418. [Google Scholar] [CrossRef]
- Singer, G.; Cohen, Y. A framework for smart control using machine-learning modeling for processes with closed-loop control in Industry 4.0. Eng. Appl. Artif. Intell. 2021, 102, 104236. [Google Scholar] [CrossRef]
- Luna-Perejón, F.; Montes-Sánchez, J.M.; Durán-López, L.; Vazquez-Baeza, A.; Beasley-Bohórquez, I.; Sevillano-Ramos, J.L. IoT Device for Sitting Posture Classification Using Artificial Neural Networks. Electronics 2021, 10, 1825. [Google Scholar] [CrossRef]
- Ahmed, K.I.; Tahir, M.; Habaebi, M.H.; Lau, S.L.; Ahad, A. Machine Learning for Authentication and Authorization in IoT: Taxonomy, Challenges and Future Research Direction. Sensors 2021, 21, 5122. [Google Scholar] [CrossRef] [PubMed]
- Nagar, D.; Raghav, S.; Bhardwaj, A.; Kumar, R.; Lata Singh, P.; Sindhwani, R. Machine learning: Best way to sustain the supply chain in the era of industry 4.0. Mater. Today Proc. 2021, 47, 3676–3682. [Google Scholar] [CrossRef]
- Resende, C.; Folgado, D.; Oliveira, J.; Franco, B.; Moreira, W.; Oliveira, A., Jr.; Cavaleiro, A.; Carvalho, R. TIP4.0: Industrial Internet of Things Platform for Predictive Maintenance. Sensors 2021, 21, 4676. [Google Scholar] [CrossRef]
- Calabrese, M.; Cimmino, M.; Fiume, F.; Manfrin, M.; Romeo, L.; Ceccacci, S.; Paolanti, M.; Toscano, G.; Ciandrini, G.; Carrotta, A.; et al. SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0. Information 2020, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Vaccari, I.; Chiola, G.; Aiello, M.; Mongelli, M.; Cambiaso, E. MQTTset, a New Dataset for Machine Learning Techniques on MQTT. Sensors 2020, 20, 6578. [Google Scholar] [CrossRef] [PubMed]
- Moens, P.; Bracke, V.; Soete, C.; Vanden Hautte, S.; Avendano, D.N.; Ooijevaar, T.; Devos, S.; Volckaert, B.; Hoecke, S. Van Scalable Fleet Monitoring and Visualization for Smart Machine Maintenance and Industrial IoT Applications. Sensors 2020, 20, 4308. [Google Scholar] [CrossRef] [PubMed]
- Merenda, M.; Porcaro, C.; Iero, D. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors 2020, 20, 2533. [Google Scholar] [CrossRef]
- Schumacher, A.; Nemeth, T.; Sihn, W. Roadmapping towards industrial digitalization based on an Industry 4.0 maturity model for manufacturing enterprises. Procedia CIRP 2019, 79, 409–414. [Google Scholar] [CrossRef]
- Ganzarain, J.; Errasti, N. Three stage maturity model in SME’s towards industry 4.0. J. Ind. Eng. Manag. 2016, 9, 1119–1128. [Google Scholar] [CrossRef]
- Canetta, L.; Barni, A.; Montini, E. Development of a Digitalization Maturity Model for the Manufacturing Sector. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018. [Google Scholar] [CrossRef]
- Lorenzo Ochoa, O. Modelos de madurez digital: ¿en qué consisten y qué podemos aprender de ellos? Bol. Estud. Económ. 2016, 71, 573–590. [Google Scholar]
- Secretaría General de Industria y de la Pequeña y Mediana Empresa HADA—Herramienta de Autodiagnóstico Avanzado para la Evaluación de la Madurez Digital. Manual Usuario. Available online: https://hada.industriaconectada40.gob.es/data/manual/Manual_usuario_HADA.pdf (accessed on 12 February 2021).
- Jacquez, M.V.; López, V.G. Modelos de evaluación de la madurez y preparación hacia la Industria 4.0: Una revisión de literatura. Ing. Ind. Actual. Nuevas Tend. 2018, 11, 61–78. [Google Scholar]
- Leyh, C.; Bley, K.; Schaffer, T.; Forstenhausler, S. SIMMI 4.0-a maturity model for classifying the enterprise-wide it and software landscape focusing on Industry 4.0. Ann. Comput. Sci. Inf. Syst. 2016, 8, 1297–1302. [Google Scholar] [CrossRef]
- Schumacher, A.; Erol, S.; Sihn, W. A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP 2016, 52, 161–166. [Google Scholar] [CrossRef]
- Tonelli, F.; Demartini, M.; Loleo, A.; Testa, C. A Novel Methodology for Manufacturing Firms Value Modeling and Mapping to Improve Operational Performance in the Industry 4.0 Era. Procedia CIRP 2016, 57, 122–127. [Google Scholar] [CrossRef]
- Otero Mateo, M.; Cerezo Narvaez, A.; Pastor Fernandez, A.; Rodriguez Pecci, F. Transformación Digital De Requisitos En La Industria 4.0: Caso De Plataformas Navales. Dyna Ing. Ind. 2018, 93, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Roldán, J.J.; Crespo, E.; Martín-Barrio, A.; Peña-Tapia, E.; Barrientos, A. A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robot. Comput. Integr. Manuf. 2019, 59, 305–316. [Google Scholar] [CrossRef]
- Liagkou, V.; Salmas, D.; Stylios, C. Realizing Virtual Reality Learning Environment for Industry 4.0. Procedia CIRP 2019, 79, 712–717. [Google Scholar] [CrossRef]
- Damiani, L.; Demartini, M.; Guizzi, G.; Revetria, R.; Tonelli, F. Augmented and virtual reality applications in industrial systems: A qualitative review towards the industry 4.0 era. IFAC-PapersOnLine 2018, 51, 624–630. [Google Scholar] [CrossRef]
- Mourtzis, D.; Zogopoulos, V.; Vlachou, E. Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP 2017, 63, 46–51. [Google Scholar] [CrossRef]
- Syberfeldt, A.; Danielsson, O.; Gustavsson, P. Augmented Reality Smart Glasses in the Smart Factory: Product Evaluation Guidelines and Review of Available Products. IEEE Access 2017, 5, 9118–9130. [Google Scholar] [CrossRef]
- Firu, A.C.; Tapîrdea, A.I.; Feier, A.I.; Draghici, G. Virtual reality in the automotive field in industry 4.0. Mater. Today Proc. 2021, 45, 4177–4182. [Google Scholar] [CrossRef]
- Ceruti, A.; Marzocca, P.; Liverani, A.; Bil, C. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. J. Comput. Des. Eng. 2019, 6, 516–526. [Google Scholar] [CrossRef]
- Wolfartsberger, J.; Zenisek, J.; Sievi, C. Chances and Limitations of a Virtual Reality-supported Tool for Decision Making in Industrial Engineering. IFAC-PapersOnLine 2018, 51, 637–642. [Google Scholar] [CrossRef]
- Lamberti, F.; Pescador, F. Advanced Interaction and Virtual\/Augmented Reality-Part II: A Look at Novel Applications. IEEE Consum. Electron. Mag. 2018, 7, 62–63. [Google Scholar] [CrossRef]
- Marino, E.; Barbieri, L.; Colacino, B.; Fleri, A.K.; Bruno, F. An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Comput. Ind. 2021, 127, 103412. [Google Scholar] [CrossRef]
- Gattullo, M.; Scurati, G.W.; Fiorentino, M.; Uva, A.E.; Ferrise, F.; Bordegoni, M. Towards augmented reality manuals for industry 4.0: A methodology. Robot. Comput. Integr. Manuf. 2019, 56, 276–286. [Google Scholar] [CrossRef]
- Paszkiewicz, A.; Salach, M.; Dymora, P.; Bolanowski, M.; Budzik, G.; Kubiak, P. Methodology of Implementing Virtual Reality in Education for Industry 4.0. Sustainability 2021, 13, 5049. [Google Scholar] [CrossRef]
- Hu, M.; Luo, X.; Chen, J.; Lee, Y.C.; Zhou, Y.; Wu, D. Virtual reality: A survey of enabling technologies and its applications in IoT. J. Netw. Comput. Appl. 2021, 178, 102970. [Google Scholar] [CrossRef]
- Masood, T.; Egger, J. Augmented reality in support of Industry 4.0—Implementation challenges and success factors. Robot. Comput. Integr. Manuf. 2019, 58, 181–195. [Google Scholar] [CrossRef]
- Salah, B.; Abidi, M.H.; Mian, S.H.; Krid, M.; Alkhalefah, H.; Abdo, A. Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0. Sustainability 2019, 11, 1477. [Google Scholar] [CrossRef] [Green Version]
- Lanyi, C.S.; Withers, J.D.A. Striving for a Safer and More Ergonomic Workplace: Acceptability and Human Factors Related to the Adoption of AR/VR Glasses in Industry 4.0. Smart Cities 2020, 3, 289–307. [Google Scholar] [CrossRef]
- Vidal-Balea, A.; Blanco-Novoa, O.; Fraga-Lamas, P.; Vilar-Montesinos, M.; Fernández-Caramés, T.M. Creating Collaborative Augmented Reality Experiences for Industry 4.0 Training and Assistance Applications: Performance Evaluation in the Shipyard of the Future. Appl. Sci. 2020, 10, 9073. [Google Scholar] [CrossRef]
- Al-Jaroodi, J.; Mohamed, N. Blockchain in Industries: A Survey. IEEE Access 2019, 7, 36500–36515. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Parizi, R.M.; Choo, K.K.R. Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access 2019, 7, 176935–176951. [Google Scholar] [CrossRef]
- Aoun, A.; Ilinca, A.; Ghandour, M.; Ibrahim, H. A review of Industry 4.0 characteristics and challenges, with potential improvements using Blockchain technology. Comput. Ind. Eng. 2021, 162, 107746. [Google Scholar] [CrossRef]
- Bellavista, P.; Esposito, C.; Foschini, L.; Giannelli, C.; Mazzocca, N.; Montanari, R. Interoperable Blockchains for Highly-Integrated Supply Chains in Collaborative Manufacturing. Sensors 2021, 21, 4955. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Parekh, K.; Khanpara, P.; Tyagi, S.; Kumar, N.; Alazab, M. Blockchain for Industry 4.0: A comprehensive review. IEEE Access 2020, 8, 79764–79800. [Google Scholar] [CrossRef]
- ElMamy, S.B.; Mrabet, H.; Gharbi, H.; Jemai, A.; Trentesaux, D. A Survey on the Usage of Blockchain Technology for Cyber-Threats in the Context of Industry 4.0. Sustainability 2020, 12, 9179. [Google Scholar] [CrossRef]
- Ferreira, C.M.S.; Oliveira, R.A.R.; Silva, J.S.; da Cunha Cavalcanti, C.F.M. Blockchain for Machine to Machine Interaction in Industry 4.0. In Blockchain Technology for Industry; Springer: Singapore, 2020; pp. 99–116. [Google Scholar] [CrossRef]
- Hennebert, C.; Barrois, F. Is the blockchain a relevant technology for the industry 4.0? In Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 28–30 September 2020; pp. 212–216. [Google Scholar] [CrossRef]
- Jang, S.H.; Guejong, J.; Jeong, J.; Sangmin, B. Fog Computing Architecture Based Blockchain for Industrial IoT. In International Conference on Computational Science; Springer: Cham, Switzerland, 2019; pp. 593–606. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Khan, S.; Suman, R. Blockchain technology applications for Industry 4.0: A literature-based review. Blockchain Res. Appl. 2021, 100027. [Google Scholar] [CrossRef]
- Kapitonov, A.; Berman, I.; Lonshakov, S.; Krupenkin, A. Blockchain based protocol for economical communication in industry 4.0. In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology, CVCBT 2018, Zug, Switzerland, 20–22 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 41–44. [Google Scholar]
- Khanfar, A.A.A.; Iranmanesh, M.; Ghobakhloo, M.; Senali, M.G.; Fathi, M. Applications of Blockchain Technology in Sustainable Manufacturing and Supply Chain Management: A Systematic Review. Sustainability 2021, 13, 7870. [Google Scholar] [CrossRef]
- Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-Secured Smart Manufacturing in Industry 4.0: A Survey. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 237–252. [Google Scholar] [CrossRef]
- Mushtaq, A.; Haq, I.U. Implications of blockchain in industry 4.O. In Proceedings of the 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 21–22 February 2019. [Google Scholar] [CrossRef]
- Rathee, G.; Balasaraswathi, M.; Chandran, K.P.; Gupta, S.D.; Boopathi, C.S. A secure IoT sensors communication in industry 4.0 using blockchain technology. J. Ambient Intell. Humaniz. Comput. 2021, 12, 533–545. [Google Scholar] [CrossRef]
- Sabri-Laghaie, K.; Ghoushchi, S.J.; Elhambakhsh, F.; Mardani, A. Monitoring Blockchain Cryptocurrency Transactions to Improve the Trustworthiness of the Fourth Industrial Revolution (Industry 4.0). Algorithms 2020, 13, 312. [Google Scholar] [CrossRef]
- Singh, M. Blockchain Technology for Data Management in Industry 4.0; Springer: Berlin, Germany, 2020; pp. 59–72. [Google Scholar] [CrossRef]
- Umran, S.M.; Lu, S.; Abduljabbar, Z.A.; Zhu, J.; Wu, J. Secure Data of Industrial Internet of Things in a Cement Factory Based on a Blockchain Technology. Appl. Sci. 2021, 11, 6376. [Google Scholar] [CrossRef]
- Swami, M.; Verma, D.; Vishwakarma, V.P. Blockchain and Industrial Internet of Things: Applications for Industry 4.0. Adv. Intell. Syst. Comput. 2021, 1164, 279–290. [Google Scholar] [CrossRef]
Category | Criteria | Code |
---|---|---|
Inclusion | The article corresponds to a scientific database and formally published. | Y01 |
Articles completely written in English or Spanish | Y02 | |
The article addresses the topic of Industry 4.0 in a major way. | Y03 | |
The article mentions key paradigms and technologies involved in Industry 4.0 concept. | Y04 | |
The article relates the key technology to Industry 4.0. | Y05 | |
The article is updated no more than 5 years in the case of key technologies. | Y06 | |
The article details the contribution of the technology in question to Industry 4.0. | Y07 | |
If it is a web page, it must correspond to official scientific dissemination sites. | Y08 | |
Exclusion | The article is not published in scientific databases and/or indexed journals. | N01 |
The quality of the information is irrelevant for this study. | N02 | |
The information is redundant and of lower quality than previously included articles. | N03 | |
The article deals with emerging technologies but does not relate them to Industry 4.0. | N04 | |
The article deals with very particular case studies and with little detail. | N05 | |
The article mentions Industry 4.0 in its title or key words but does not address the topic in its content. | N06 | |
The information in the article is outdated with respect to others previously included. | N07 | |
If it is a web page, it corresponds to blogs or unofficial web pages. | N08 |
Technology/Paradigm | Identified Documents | Excluded Documents | Included Documents | References |
---|---|---|---|---|
Industry 4.0 | 55 | 40 | 15 | [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] |
Cyber–Physical Systems | 61 | 55 | 6 | [16,17,18,19,20,21] |
IoT–IIoT | 120 | 103 | 17 | [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] |
Cyber security | 44 | 30 | 14 | [39,40,41,42,43,44,45,46,47,48,49,50,51,52] |
Big Data and Analytics | 82 | 73 | 9 | [53,54,55,56,57,58,59,60,61] |
Big Data in Industry 4.0 | 68 | 55 | 13 | [62,63,64,65,66,67,68,69,70,71,72,73,74] |
Digital Twin | 45 | 29 | 16 | [75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90] |
Cloud, Fog, Edge computing | 265 | 240 | 25 | [91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115] |
5G in Industry 4.0 | 78 | 64 | 14 | [116,117,118,119,120,121,122,123,124,125,126,127,128,129] |
AI in Industry 4.0 | 198 | 177 | 21 | [130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150] |
Digital Maturity of Industry | 46 | 36 | 10 | [151,152,153,154,155,156,157,158,159,160] |
Virtual/Augmented Reality | 72 | 55 | 17 | [161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177] |
Blockchain in Industry 4.0 | 52 | 32 | 20 | [178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196] |
Total | 1186 | 989 | 197 |
Country | Number of Documents |
---|---|
U.S.A. | 28 |
China | 27 |
Spain | 22 |
Italy | 18 |
Germany | 16 |
India | 12 |
Australia | 10 |
United Kingdom | 10 |
Canada, South Korea | 8 |
France | 7 |
Brazil | 7 |
Austria | 5 |
Colombia, Sweden, Turkey, Portugal, Greece | 4 |
Ireland, Poland, Romania, Finland, Saudi Arabia, Malaysia, Denmark | 3 |
Switzerland, Lithuania, Taiwan, Singapore, Pakistan, Iran, Belgium, New Zealand, Hungary | 2 |
Slovakia, Ecuador, Russia, Norway, México, Morocco, Egypt, Estonia, Argentina, Macedonia, Malta, Czech Republic, the Netherlands, Jordan, Seoul, Israel, Mexico, Palestine, Lebanon, Tunisia, Iraq | 1 |
Technology/Paradigm | 2008 | 2009 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Industry 4.0 | 1 | 4 | 3 | 3 | 1 | 3 | ||||||
Cyber–Physical Systems | 1 | 1 | 2 | 2 | ||||||||
IoT–IIoT | 1 | 2 | 1 | 1 | 3 | 2 | 7 | |||||
Cyber security | 2 | 4 | 1 | 1 | 6 | |||||||
Big Data and Analytics | 1 | 2 | 1 | 1 | 1 | 3 | ||||||
Big Data and Industry 4.0 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | ||||
Digital Twin | 1 | 2 | 1 | 12 | ||||||||
Cloud computing, Fog computing, Edge computing | 1 | 1 | 4 | 5 | 14 | |||||||
5G and Industry 4.0 | 1 | 1 | 1 | 3 | 2 | 6 | ||||||
AI and Industry 4.0 | 4 | 1 | 9 | 7 | ||||||||
Digital Maturity of Industry | 5 | 1 | 3 | 1 | ||||||||
Virtual/Augmented Reality | 2 | 3 | 6 | 2 | 4 | |||||||
Blockchain in Industry 4.0 | 1 | 4 | 6 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Jácome, C.; Carvajal, R.G.; Chavero, F.M.; Guevara-Cabezas, E.; Hidalgo Fort, E. Industry 4.0: A Proposal of Paradigm Organization Schemes from a Systematic Literature Review. Sensors 2022, 22, 66. https://doi.org/10.3390/s22010066
Rocha-Jácome C, Carvajal RG, Chavero FM, Guevara-Cabezas E, Hidalgo Fort E. Industry 4.0: A Proposal of Paradigm Organization Schemes from a Systematic Literature Review. Sensors. 2022; 22(1):66. https://doi.org/10.3390/s22010066
Chicago/Turabian StyleRocha-Jácome, Cristian, Ramón González Carvajal, Fernando Muñoz Chavero, Esteban Guevara-Cabezas, and Eduardo Hidalgo Fort. 2022. "Industry 4.0: A Proposal of Paradigm Organization Schemes from a Systematic Literature Review" Sensors 22, no. 1: 66. https://doi.org/10.3390/s22010066
APA StyleRocha-Jácome, C., Carvajal, R. G., Chavero, F. M., Guevara-Cabezas, E., & Hidalgo Fort, E. (2022). Industry 4.0: A Proposal of Paradigm Organization Schemes from a Systematic Literature Review. Sensors, 22(1), 66. https://doi.org/10.3390/s22010066