Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis and Nanogenerator Fabrication
2.2. Structural and Chemical Characterization of the SbSI–TiO2 Nanocomposite
2.3. Electrical Measurements
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pandya, S.; Velarde, G.; Zhang, L.; Wilbur, J.D.; Smith, A.; Hanrahan, B.; Dames, D.; Martin, L.W. New approach to waste-heat energy harvesting: Pyroelectric energy conversion. NPG Asia Mater. 2019, 11, 26. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Wang, R.Z.; Yang, C. Perspectives for low-temperature waste heat recovery. Energy 2019, 176, 1037–1043. [Google Scholar] [CrossRef]
- Rahimi, M.; Straub, A.P.; Zhang, F.; Zhu, X.; Elimelech, M.; Gorski, C.A.; Logan, B.E. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Environ. Sci. 2018, 11, 276–285. [Google Scholar] [CrossRef]
- Duan, J.; Feng, G.; Yu, B.; Li, J.; Chen, M.; Yang, P.; Feng, J.; Liu, K.; Zhou, J. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 2018, 9, 5146. [Google Scholar] [CrossRef] [Green Version]
- Owusu, M.; Mensah-Darkwa, K.; Andrews, A.; Davis, F.; Phelan, P. Effect of transient low-grade solar heat on liquid thermogalvanic cells. Mater. Today Proc. 2021, 38, 767–772. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Zulkepli, N.; Yunas, J.; Ambri Mohamed, M.; Hamzah, A.A. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines 2021, 12, 734. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A Review on Thermoelectric Generators: Progress and Applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Kishore, R.A.; Priya, S. A Review on Low-Grade Thermal Energy Harvesting: Materials, Methods and Devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Kishore, R.A.; Davis, B.; Greathouse, J.; Hannon, A.; Kennedy, D.E.; Millar, A.; Mittel, D.; Nozariasbmarz, A.; Kang, M.G.; Kang, H.B.; et al. Energy scavenging from ultra-low temperature gradients. Energy Environ. Sci. 2019, 12, 1008–1018. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S.-W. Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy. Small 2019, 17, 1903469. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef] [Green Version]
- Lingam, D.; Parikh, A.R.; Huang, J.; Jain, A.; Minary-Jolandan, M. Nano/microscale pyroelectric energy harvesting: Challenges and opportunities. Int. J. Smart Nano Mater. 2013, 4, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.Y.; Jo, H.R.; Lynch, C.S.; Pilon, L. Pyroelectric energy conversion using PLZT ceramics and the ferroelectric–ergodic relaxor phase transition. Smart Mater. Struct. 2013, 22, 025038. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bao, Y.; Zhou, K.; Zhang, D.; Bowen, C.R. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 2017, 5, 6569–6580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X. Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets. J. Appl. Phys. 2010, 108, 011101. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, C.-C.; Yu, S.-Y. Improved Response of ZnO Films for Pyroelectric Devices. Sensors 2012, 12, 17007–17022. [Google Scholar] [CrossRef] [PubMed]
- Morozovska, A.N.; Eliseev, E.A.; Glinchuk, M.D.; Shevliakova, H.V.; Svechnikov, G.S.; Silibin, M.V.; Sysa, A.V.; Yaremkevich, A.D.; Morozovsky, N.V.; Shvartsman, V.V. Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Phys. Rev. Mater. 2019, 3, 104414. [Google Scholar] [CrossRef] [Green Version]
- Velarde, G.; Pandya, S.; Karthik, J.; Pesquera, D.; Martin, L.W. Pyroelectric thin films—Past, present, and future. APL Mater. 2021, 9, 010702. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Eliseev, E.A.; Svechnikov, G.S.; Kalinin, S.V. Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. J. Appl. Phys. 2010, 108, 042009. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shao, J.; Li, X.; Tian, H. A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array. IEEE Trans. Nanotechnol. 2016, 15, 295–302. [Google Scholar] [CrossRef]
- Meneses-Franco, A.; Trujillo-Rojo, V.H.; Soto-Bustamante, E.A. Synthesis and characterization of pyroelectric nanocomposite formed of BaTiO3 nanoparticles and a smectic liquid crystal matrix. Phase Transit. 2010, 83, 1037–1047. [Google Scholar] [CrossRef]
- Fatuzzo, E.; Harbeke, G.; Merz, W.J.; Nitsche, R.; Roetschi, H.; Ruppel, W. Ferroelectricity in SbSI. Phys. Rev. 1962, 127, 2036. [Google Scholar] [CrossRef]
- Imai, K.; Kawada, S.; Ida, M. Anomalous Pyroelectric Properties of SbSI Single Crystals. J. Phys. Soc. Jpn. 1966, 21, 1855–1860. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Newnham, R.E.; Cross, L.E.; Dougherty, J.P.; Smith, W.A. Pyroelectricity in SbSI. Ferroelectrics 1981, 33, 3–7. [Google Scholar] [CrossRef]
- Rao, T.S.; Mansingh, A. Electrical and Optical Properties of SbSI Films. Jpn. J. Appl. Phys. 1985, 24, 422. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S.; Pandey, R.K. Physical vapor deposition of antimony sulpho-iodide (SbSI) thin films and their properties. In Proceedings of the 1994 IEEE International Symposium on Applications of Ferroelectrics, State College, PA, USA, 12–16 May 2014; IEEE: Piscataway, NJ, USA, 1994; pp. 309–311. [Google Scholar] [CrossRef]
- Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Kim, S.-J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 2018, 50, 256–265. [Google Scholar] [CrossRef]
- Toroń, B.; Mistewicz, K.; Jesionek, M.; Kozioł, M.; Stróż, D.; Zubko, M. Nanogenerator for dynamic stimuli detection and mechanical energy harvesting based on compressed SbSeI nanowires. Energy 2020, 212, 118717. [Google Scholar] [CrossRef]
- Mistewicz, K.; Jesionek, M.; Kim, H.J.; Hajra, S.; Kozioł, M.; Chrobok, Ł.; Wang, X. Nanogenerator for determination of acoustic power in ultrasonic reactors. Ultrason. Sonochem. 2021, 78, 105718. [Google Scholar] [CrossRef]
- Nie, R.; Yun, H.-S.; Paik, M.-J.; Mehta, A.; Park, B.-W.; Choi, Y.C.; Seok, S.I. Efficient Solar Cells Based on Light-Harvesting Antimony Sulfoiodide. Adv. Energy Mater. 2018, 8, 1701901. [Google Scholar] [CrossRef]
- Mistewicz, K.; Matysiak, W.; Jesionek, M.; Jarka, P.; Kępińska, M.; Nowak, M.; Tański, T.; Stróż, D.; Szade, J.; Balin, K.; et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 2020, 517, 146138. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Fang, Y.; Chen, G.; Li, Q.; Sheng, X.; Xu, X.; Hui, J.; Lan, Y.; Fang, M.; et al. SbSI Nanocrystals: An Excellent Visible Light Photocatalyst with Efficient Generation of Singlet Oxygen. ACS Sustain. Chem. Eng. 2018, 6, 12166–12175. [Google Scholar] [CrossRef]
- Mistewicz, K.; Kępińska, M.; Nowak, M.; Sasiela, A.; Zubko, M.; Stróż, D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials 2020, 13, 4803. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Yamanaka, K.; Hamakawa, Y. Semiconducting and Dielectric Properties of C-Axia Oriented SbSI Thin Film. Jpn. J. Appl. Phys. 1973, 12, 1699. [Google Scholar] [CrossRef]
- Mansingh, A.; Sudersena Rao, T. Growth and characterization of flash evaporated ferroelectric antimony sulphoiodide thin films. J. Appl. Phys. 1985, 58, 3530–3535. [Google Scholar] [CrossRef]
- Mansingh, A.; Rao, T.S. I-V and C-V characteristics of ferroelectric SbSI (film)-Si-metal. Ferroelectrics 1983, 50, 263–264. [Google Scholar] [CrossRef]
- Surthi, S.; Kotru, S.; Pandey, R.K. Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition. J. Mater. Sci. Lett. 2003, 22, 591–593. [Google Scholar] [CrossRef]
- Surthi, S.; Kotru, S.; Pandey, R.K. SbSI Films for Ferroelectric Memory Applications. Integr. Ferroelectr. 2002, 48, 263–269. [Google Scholar] [CrossRef]
- Inagaki, S.; Nakamura, M.; Hatada, H.; Nishino, R.; Kagawa, F.; Tokura, Y.; Kawasaki, M. Growth of visible-light-responsive ferroelectric SbSI thin films by molecular beam epitaxy. Appl. Phys. Lett. 2020, 116, 072902. [Google Scholar] [CrossRef]
- Choi, Y.C.; Hwang, E.; Kim, D.-H. Controlled growth of SbSI thin films from amorphous Sb2S3 for low-temperature solution processed chalcohalide solar cells. APL Mater. 2018, 6, 121108. [Google Scholar] [CrossRef] [Green Version]
- Nie, R.; Seok, S.I. Efficient Antimony-Based Solar Cells by Enhanced Charge Transfer. Small Methods 2020, 4, 1900698. [Google Scholar] [CrossRef]
- Gödel, K.C.; Steiner, U. Thin film synthesis of SbSI micro-crystals for self-powered photodetectors with rapid time response. Nanoscale 2016, 8, 15920–15925. [Google Scholar] [CrossRef]
- Ye, H.; Xu, Y.; Mackenzie, J.D. Semiconducting ferroelectric SbSI quantum dots in organically modified TiO2 matrix. In Sol-Gel Optics V; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 3943, pp. 95–101. [Google Scholar] [CrossRef]
- Gan, W.C.; Abd Majid, W.H. Effect of TiO2 on enhanced pyroelectric activity of PVDF composite. Smart Mater. Struct. 2014, 23, 045026. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Starczewska, A.; Jesionek, M.; Rzychoń, T.; Wrzalik, R.; Guiseppi-Elie, A. Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 2016, 182, 78–80. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, Q.; Ma, K.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Q.; Zhang, H.; Chen, C.-D.; Liang, Y.; Du, R.-G.; Lin, C.-J. Facile ultrasonic deposition of SnO2 nanoparticles on TiO2 nanotube films for enhanced photoelectrochemical performances. J. Mater. Chem. A 2015, 3, 22605–22613. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C. High Temperature Stable Anatase Phase Titanium Dioxide Films Synthesized by Mist Chemical Vapor Deposition. Nanomaterials 2020, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Borchert, J.W.; Stewart, I.E.; Ye, S.; Rathmell, A.R.; Wiley, B.J.; Winey, K.I. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors. Nanoscale 2015, 7, 14496–14504. [Google Scholar] [CrossRef]
- Khanarian, G.; Joo, J.; Liu, X.-Q.; Eastman, P.; Werner, D.; O’Connell, K.; Trefonas, P. The optical and electrical properties of silver nanowire mesh films. J. Appl. Phys. 2013, 114, 024302. [Google Scholar] [CrossRef]
- Lu, C. On the bending strength of ZnO nanowires. Phys. Lett. A 2008, 372, 6113–6115. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-P.; Liu, Y.-H.; Sun, A.-C.; Hsu, J.-H. Determining the size distribution of magnetic nanoparticles based on analysis of magnetization curves. J. Appl. Phys. 2009, 106, 103905. [Google Scholar] [CrossRef]
- Pauw, B.R.; Kastner, C.; Thunemann, A.F. Nanoparticle size distribution quantification: Results of a small-angle X-ray scattering inter-laboratory comparison. J. Appl. Cryst. 2017, 50, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.-K.; Chern, M.-Y.; Lee, H.-Y. Size-controllable synthesis and bandgap modulation of single-layered RF-sputtered bismuth nanoparticles. Nanoscale Res. Lett. 2014, 9, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochenek, D.; Niemiec, P.; Skulski, R.; Adamczyk, M.; Brzezińska, D. Electrophysical properties of the multicomponent PBZT-type ceramics doped by Sn4+. J. Electroceram. 2019, 42, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Dhananjay, D.; Nagaraju, N.; Krupanidhi, S.B. Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation. J. Appl. Phys. 2007, 101, 104104. [Google Scholar] [CrossRef]
- Mansingh, A.; Srivastava, K.N.; Singh, B. Effect of surface capacitance on the dielectric behavior of ferroelectric lead germanate. J. Appl. Phys. 1979, 50, 4319. [Google Scholar] [CrossRef]
- Połomska, M.; Hilczer, B.; Michalczyk, M. Electric conductivity of some ferroelectric crystals. Ferroelectrics 1981, 39, 1217–1220. [Google Scholar] [CrossRef]
- Goto, Y.; Sawaguchi, E. Electric Conductivity of Ferroelectric Pb5Ge3O11. J. Phys. Soc. Jpn. 1979, 46, 1580–1582. [Google Scholar] [CrossRef]
- Rao, T.S.; Mansingh, A. Electrical properties of antimony sulphoiodide (SbSI) thin films. Ferroelectrics 1989, 93, 53. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D. A Ferroelectric-Photovoltaic Effect in SbSI Nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.S.; Gan, W.C.; Velayutham, T.S.; Abd Majid, W.H. Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Mater. Struct. 2014, 23, 125006. [Google Scholar] [CrossRef]
- Mahdi, R.I.; Gan, W.C.; Halim, N.A.; Velayutham, T.S.; Abd Majid, W.H. Ferroelectric and pyroelectric properties of novel lead-free polyvinylidene fluoride-trifluoroethylene–Bi0.5Na0.5TiO3 nanocomposite thin films for sensing applications. Ceram. Int. 2015, 41, 13836–13843. [Google Scholar] [CrossRef]
- Mahdi, R.I.; Gan, W.C.; Abd Majid, W.H. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators. Sensors 2014, 14, 19115–19127. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Ploss, B.; Zirkl, M.; Stadlober, B.; Helbig, U. PbTiO3—P(VDF-TrFE)—Nanocomposites for Pressure and Temperature Sensitive Skin. Ferroelectrics 2011, 419, 23–27. [Google Scholar] [CrossRef]
- Zhang, F.; Kang, H.; Lin, Y.; Guan, L.; Aslan, H.; Zhang, M.; Niu, L.; Dong, M. Studying the Pyroelectric Effects of LiNbO3 Modified Composites. Nanoscale Res. Lett. 2020, 15, 106. [Google Scholar] [CrossRef] [PubMed]
- Halim, N.A.; Abd Majid, W.H.; Velayutham, T.S. Ferroelectric, pyroelectric and piezoelectric properties of CeO2-doped Na0.5Bi0.5TiO3 ceramics. SN Appl. Sci. 2019, 1, 582. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.P.; Behera, M.K.; Pradhan, D.K.; Pradhan, S.K.; Bonner, C.E.; Bahoura, M. Lead-free relaxor-ferroelectric thin films for energy harvesting from low-grade waste-heat. Sci. Rep. 2021, 11, 111. [Google Scholar] [CrossRef]
- Xue, D.; Gao, J.; Zhang, L.; Bao, H.; Liu, W.; Zhou, C.; Ren, X. Aging effect in paraelectric state of ferroelectrics: Implication for a microscopic explanation of ferroelectric deaging. Appl. Phys. Lett. 2009, 94, 082902. [Google Scholar] [CrossRef]
- Nakamura, M.; Hatada, H.; Kaneko, Y.; Ogawa, N.; Sotome, M.; Tokura, Y.; Kawasaki, M. Non-local photocurrent in a ferroelectric semiconductor SbSI under local photoexcitation. Appl. Phys. Lett. 2020, 116, 122902. [Google Scholar] [CrossRef]
- Nakamura, M.; Hatada, H.; Kaneko, Y.; Ogawa, N.; Tokura, Y.; Kawasaki, M. Impact of electrodes on the extraction of shift current from a ferroelectric semiconductor SbSI. Appl. Phys. Lett. 2018, 113, 232901. [Google Scholar] [CrossRef]
- Yu, Z.; Perera, I.R.; Daeneke, T.; Makuta, S.; Tachibana, Y.; Jasieniak, J.J.; Mishra, A.; Bäuerle, P.; Spiccia, L.; Bach, U. Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater. 2016, 8, e305. [Google Scholar] [CrossRef]
- Anitha, V.C.; Banerjee, A.N.; Joo, S.W. Recent developments in TiO2 as n- and p-type transparent semiconductors: Synthesis, modification, properties, and energy related applications. J. Mater. Sci. 2015, 50, 7495–7536. [Google Scholar] [CrossRef]
- Park, Y.; Choong, V.; Gao, Y.; Hsieh, B.R.; Tang, C.W. Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 1996, 68, 2699. [Google Scholar] [CrossRef]
- Mansfeldova, V.; Zlamalova, M.; Tarabkova, H.; Janda, P.; Vorokhta, M.; Piliai, L.; Kavan, L. Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. J. Phys. Chem. C 2021, 125, 1902–1912. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Liu, J.; Wang, Z.L. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 2007, 316, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Xu, R.; Dou, W.; Benner, M.; Zhang, Q.; Liu, J. Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy 2021, 83, 105849. [Google Scholar] [CrossRef]
- Lu, Y.; Hao, Z.; Feng, S.; Shen, R.; Yan, Y.; Lin, S. Direct-Current Generator Based on Dynamic PN Junctions with the Designed Voltage Output. iScience 2019, 22, 58–69. [Google Scholar] [CrossRef]
- Liu, J.; Liu, F.; Bao, R.; Jiang, K.; Khan, F.; Li, Z.; Peng, H.; Chen, J.; Alodhayb, A.; Thundat, T. Scaled-up Direct-Current Generation in MoS2 Multilayer-Based Moving Heterojunctions. ACS Appl. Mater. Interfaces 2019, 11, 35404–35409. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Y.; Yu, X.; Zhou, X.; Feng, S.; Xu, C.; Zheng, H.; Yang, Z.; Li, L.; Liu, K.; et al. Polarized Water Driven Dynamic PN Junction-Based Direct-Current Generator. Research 2021, 2021, 7505638. [Google Scholar] [CrossRef]
- Meng, J.; Guo, Z.H.; Pan, C.; Wang, L.; Chang, C.; Li, L.; Pu, X.; Wang, Z.L. Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Lett. 2021, 6, 2442–2450. [Google Scholar] [CrossRef]
- Wang, W.; Han, X.; Niu, J.; Jin, X.; Wang, H.; Shao, H.; Lin, T. Direct-current energy generators from polypyrrole-coated fabric/metal Schottky diodes with considerably improved output. J. Mater. Chem. A 2020, 8, 24166–24174. [Google Scholar] [CrossRef]
- Ding, X.; Shao, H.; Wang, H.; Yang, W.; Fang, J.; Zhang, D.; Lin, T. Schottky DC generators with considerable enhanced power output and energy conversion efficiency based on polypyrrole-TiO2 nanocomposite. Nano Energy 2021, 89, 106367. [Google Scholar] [CrossRef]
- Shao, H.; Fang, J.; Wang, H.; Zhou, H.; Lin, T. Direct current energy generators from a conducting polymer–inorganic oxide junction. J. Mater. Chem. A 2017, 5, 8267–8273. [Google Scholar] [CrossRef]
- Sandomirsky, V.; Schlesinger, Y.; Dashevsky, Z. Pyroelectric effect of a p –n junction in a nonpolar solid. Appl. Phys. Lett. 2005, 86, 133501. [Google Scholar] [CrossRef]
- Mistewicz, K.; Jesionek, M.; Nowak, M.; Kozioł, M. SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 2019, 64, 103906. [Google Scholar] [CrossRef]
- Grigas, J.; Talik, E.; Adamiec, M.; Lazauskas, V. X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals. Condens. Matter Phys. 2007, 10, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Suyal, G.; Seifert, A.; Setter, N. Pyroelectric nanoporous films: Synthesis and properties. Appl. Phys. Lett. 2002, 81, 1059. [Google Scholar] [CrossRef]
- Seifert, A.; Sagalowicz, L.; Muralt, P.; Setter, N. Microstructural evolution of dense and porous pyroelectric Pb1–axCaxTiO3 thin films. J. Mater. Res. 1999, 14, 2012–2022. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Bukowski, T.J.; McCarthy, K.; McCarthy, F.; Teowee, G.; Alexander, T.P.; Uhlmann, D.R.; Dawley, J.T.; Zelinski, B.J.J. Piezoelectric properties of sol-gel derived ZnO thin films. Integr. Ferroelectr. 1997, 17, 339–347. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Wang, Z.L.; Yang, Y. Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 2019, 55, 534–540. [Google Scholar] [CrossRef]
- Saito, T.; Kawai, Y.; Ono, T. Thermoelectric power generator based on a ferroelectric material combined with a bimetal thermostat. In Transducers & Eurosensors XXVII, Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2280–2283. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M.; Mori, K.; Takeuchi, H.; Kobayashi, T.; Omote, K. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: Measurements and linking phase field and finite element simulations. Smart Mater. Struct. 2017, 26, 115027. [Google Scholar] [CrossRef]
- Zhao, K.; Ouyang, B.; Yang, Y. Enhancing Photocurrent of Radially Polarized Ferroelectric BaTiO3 Materials by Ferro-Pyro-Phototronic Effect. iScience 2018, 3, 208–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karim, H.; Sarker, M.R.H.; Shahriar, S.; Shuvo, M.A.I.; Delfin, D.; Hodges, D.; Tseng, T.-L.; Roberson, D.; Love, N.; Lin, Y. Feasibility study of thermal energy harvesting using lead free pyroelectrics. Smart Mater. Struct. 2016, 25, 055022. [Google Scholar] [CrossRef]
- Zhao, T.; Jiang, W.; Liu, H.; Niu, D.; Li, X.; Liu, W.; Li, X.; Chen, B.; Shi, Y.; Yin, L.; et al. An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale 2016, 8, 8111–8117. [Google Scholar] [CrossRef] [PubMed]
- You, M.-H.; Wang, X.-X.; Yan, X.; Zhang, J.; Song, W.-Z.; Yu, M.; Fan, Z.-Y.; Ramakrishna, S.; Long, Y.-Z. A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. J. Mater. Chem. A 2018, 6, 3500–3509. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.H.; Ryu, H.; Lee, J.-H.; Khan, U.; Kim, H.; Kwak, S.S.; Kim, S.-W. High-Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF-TrFE) with Controlled Crystallinity and Dipole Alignment. Adv. Funct. Mater. 2017, 27, 1700702. [Google Scholar] [CrossRef]
- Mascot, M.; Fasquelle, D.; Velu, G.; Ferri, A.; Desfeux, R.; Courcot, L.; Carru, J.C. Pyro, Ferro and Dielectric Properties of Ba0.8Sr0.2TiO3 Films Deposited by Sol-Gel on Platinized Silicon Substrates. Ferroelectrics 2008, 362, 79–86. [Google Scholar] [CrossRef]
- Yang, Y.; Jung, J.H.; Yun, B.K.; Zhang, F.; Pradel, K.C.; Guo, W.; Wang, Z.L. Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead-Free KNbO3 Nanowires. Adv. Mater. 2012, 24, 5357–5362. [Google Scholar] [CrossRef]
- Olszowy, M.; Pawlaczyk, C.; Markiewicz, E.; Kułek, J. Dielectric and pyroelectric properties of BaTiO3–PVC composites. Phys. Stat. Sol. A 2005, 202, 1848–1853. [Google Scholar] [CrossRef]
- Li, W.; Zheng, A.; Lin, Y.; Liu, P.; Shen, M.; Zhou, L.; Liu, H.; Yuan, J.; Qin, S.; Zhang, X.; et al. High pyroelectric effect in poly(vinylidene fluoride) composites cooperated with diamond nanoparticles. Mater. Lett. 2020, 267, 127514. [Google Scholar] [CrossRef]
- Sultana, A.; Ghosh, S.K.; Alam, M.M.; Sadhukhan, P.; Roy, K.; Xie, M.; Bowen, C.R.; Sarkar, S.; Das, S.; Middya, T.R.; et al. Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric–Pyroelectric Nanogenerator. ACS Appl. Mater. Interfaces 2019, 11, 27279–27287. [Google Scholar] [CrossRef] [PubMed]
- Avinash, B.S.; Chaturmukha, V.S.; Jayanna, H.S.; Naveen, C.S.; Rajeeva, M.P.; Harish, B.M.; Suresh, S.; Lamani, A.R. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2016; Volume 1728, p. 020426. [Google Scholar] [CrossRef]
- Wei, N.; Zhang, D.-M.; Yang, F.-X.; Han, X.-Y.; Zhong, Z.-C.; Zheng, K.-Y. Effect of electrical conductivity on the polarization behaviour and pyroelectric, piezoelectric property prediction of 0–3 ferroelectric composites. J. Phys. Appl. Phys. 2007, 40, 2716–2722. [Google Scholar] [CrossRef]
Chemical Element | Atomic Concentration, % | ||
---|---|---|---|
Area in Figure 2b | Spot 1 in Figure 2c | Spot 2 in Figure 2c | |
Sb | 15.6 | 36.8 | 13.8 |
S | 14.9 | 30.4 | 0 |
I | 11.1 | 32.8 | 0 |
Ti | 18.5 | 0 | 28.8 |
O | 39.9 | 0 | 57.4 |
Material | Preparation Method | TC, K | Reference |
---|---|---|---|
bulk crystal of SbSI | 295 | [23] | |
bulk crystal of SbSI | vapor phase growth | 292–293 | [24] |
bulk crystal of SbSI | Bridgman method and vapor transport technique | 293 | [25] |
SbSI film | physical vapor deposition | 295 | [27] |
SbSI film | electron beam evaporation | 294 | [35] |
SbSI film | flash evaporation | 293 | [37] |
SbSI film | pulsed laser deposition | 292 | [38] |
SbSI film | pulsed laser deposition | 290–294 | [39] |
SbSI nanowires | sonochemical synthesis | 291(2) | [62] |
SbSI–TiO2 nanocomposite | sonochemical synthesis | 294(2) | this paper |
Group of Materials | Material | p, nC/(cm2·K) | PS, µW/m2 | Reference |
---|---|---|---|---|
non-ferroelectric materials | ZnO NWs | 1.5 | [91] | |
ZnO TFs | 1.0–1.4 | [92] | ||
CdS NRs | 470 | [47] | ||
inorganic ferroelectric bulk crystals or ceramics | PZT BCs | 53.3 | 3700 max | [93] |
PZT BCs | 20 | 13.6 avr | [94] | |
BaTiO3 BCs | 10 | 2240 max | [95] | |
BaTiO3 BCs | 16 | [96] | ||
LiNbO3 SC | 5–8 | 219 max | [97] | |
SbSI SC | 1200 | [25] | ||
pure ferroelectric polymers | PVDF | 1.94 | [45] | |
PVDF | 4 | 108 max | [98] | |
PVDF | 0.13 max | [99] | ||
P(VDF–TrFE) | 2.4 | [65] | ||
P(VDF–TrFE) | 4.39 | 128 max | [100] | |
ferroelectric thin films or nanomaterials | Ba0.8Sr0.2TiO3 TFs | 25 | [101] | |
KNbO3 NWs | 0.8 | [102] | ||
SbSI TFs | 0.008 | [26] | ||
SbSI TFs | 180 | [27] | ||
SbSeI NWs | 44(5) | 0.59(4) max | [87] | |
ferroelectric composites | BaTiO3–PVC | 10.6 | [103] | |
PVDF–diamond NPs | 8.7 | [104] | ||
PVDF–TiO2 | 2.45 | [45] | ||
PVDF–ZnO NPs | ~2.9 | [63] | ||
PVDF–CH3NH3PbI3 | 0.004 | 1.75 max | [105] | |
P(VDF–TrFE)–BNT NPs | 5 | [64] | ||
P(VDF–TrFE)–PbTiO3 NPs | 4 | [66] | ||
SbSI NWs–TiO2 NPs | 264(7) | 8.39(2) max 2.57(2) avr | this paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mistewicz, K. Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite. Sensors 2022, 22, 69. https://doi.org/10.3390/s22010069
Mistewicz K. Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite. Sensors. 2022; 22(1):69. https://doi.org/10.3390/s22010069
Chicago/Turabian StyleMistewicz, Krystian. 2022. "Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite" Sensors 22, no. 1: 69. https://doi.org/10.3390/s22010069
APA StyleMistewicz, K. (2022). Pyroelectric Nanogenerator Based on an SbSI–TiO2 Nanocomposite. Sensors, 22(1), 69. https://doi.org/10.3390/s22010069