Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumented Stud
2.3. Materials
2.4. Testing Procedure
2.4.1. Laboratory-Based Experiment
2.4.2. On-Field Experiment
2.5. Definition of Reference Frames
2.6. Data Analysis
2.6.1. Laboratory-Based Experiment
2.6.2. On-Field Experiment
2.7. Statistical Analysis
2.7.1. Laboratory-Based Experiment
2.7.2. On-Field Experiment
3. Results
3.1. Laboratory-Based Experiment
3.2. On-Field Experiment
3.2.1. Running Movements
3.2.2. Countermovement Jumps
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fédération Internationale de Football Association (FIFA). FIFA Survey: Approximately 250 Million Footballers Worldwide; FIFA: Zurich, Switzerland, 2001. [Google Scholar]
- Fédération Internationale de Football Association (FIFA). Professional Football Report 2019; FIFA: Zurich, Switzerland, 2019. [Google Scholar]
- Beachy, G.; Akau, C.K.; Martinson, M.; Olderr, T.F. High school sports injuries: A longitudinal study at Punahou School: 1988 to 1996. Am. J. Sports Med. 1997, 25, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.D.; Fuller, C.W. A prospective epidemiological study of injuries in four English professional football clubs. Br. J. Sports Med. 1999, 33, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.W.; Barber-Foss, K.D. Injury Patterns in Selected High School Sports: A Review of the 1995-1997 Seasons. J. Athl. Train. 1999, 34, 277–284. [Google Scholar] [PubMed]
- Schmikli, S.L.; de Vries, W.R.; Inklaar, H.; Backx, F.J.G. Injury prevention target groups in soccer: Injury characteristics and incidence rates in male junior and senior players. J. Sci. Med. Sport 2011, 14, 199–203. [Google Scholar] [CrossRef]
- Bengtsson, H.; Ekstrand, J.; Hägglund, M. Muscle injury rates in professional football increase with fixture congestion: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 743–747. [Google Scholar] [CrossRef]
- Hägglund, M. Epidemiology and Prevention of Football Injuries; Linköping University: Linköping, Sweden, 2007; ISBN 9789185715510. [Google Scholar]
- Ekstrand, J.; Hägglund, M.; Kristenson, K.; Magnusson, H.; Waldén, M. Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: An 11-year follow-up of the UEFA Champions League injury study. Br. J. Sports Med. 2013, 47, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef]
- Behan, F.P.; Willis, S.; Pain, M.T.G.; Folland, J.P. Effects of football simulated fatigue on neuromuscular function and whole-body response to disturbances in balance. Scand. J. Med. Sci. Sport. 2018, 28, 2547–2557. [Google Scholar] [CrossRef]
- Gutierrez, G.M.; Jackson, N.D.; Dorr, K.A.; Margiotta, S.E.; Kaminski, T.W. Effect of fatigue on neuromuscular function at the ankle. J. Sport Rehabil. 2007, 16, 295–306. [Google Scholar] [CrossRef] [Green Version]
- Verschueren, J.; Tassignon, B.; De Pauw, K.; Proost, M.; Teugels, A.; Van Cutsem, J.; Roelands, B.; Verhagen, E.; Meeusen, R. Does Acute Fatigue Negatively Affect Intrinsic Risk Factors of the Lower Extremity Injury Risk Profile? A Systematic and Critical Review. Sport. Med. 2020, 50, 767–784. [Google Scholar] [CrossRef]
- Waldén, M.; Hägglund, M.; Ekstrand, J. Football injuries during European Championships 2004-2005. Knee Surgery Sport. Traumatol. Arthrosc. 2007, 15, 1155–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, G.; Nedelec, M.; McCall, A.; McCormack, D.; Berthoin, S.; Wisløff, U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am. J. Sports Med. 2010, 38, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The training—injury prevention paradox: Should athletes be training smarter and harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hägglund, M.; Waldén, M.; Ekstrand, J. Injury incidence and distribution in elite football—A prospective study of the Danish and the Swedish top divisions. Scand. J. Med. Sci. Sport. 2005, 15, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, J.; Waldén, M.; Hägglund, M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: A 13-year longitudinal analysis of the UEFA Elite Club injury study. Br. J. Sports Med. 2016, 50, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training Load Monitoring in Team Sports: A Novel Framework Separating Physiological and Biomechanical Load-Adaptation Pathways. Sport. Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Buchheit, M.; Simpson, B.M. Player tracking technology: Half-full or half-empty glass? Int. J. Sports Physiol. Perform. 2016, 12 (Suppl. S2), S235–S241. [Google Scholar] [CrossRef] [Green Version]
- Jennings, D.; Cormack, S.; Coutts, A.J.; Boyd, L.; Aughey, R.J. The Validity and Reliability of GPS Units for Measuring Distance in Team Sport Specific Running Patterns. Int. J. Sports Physiol. Perform. 2010, 5, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Gray, A.; Morin, J.B. Assessing stride variables and vertical stiffness with GPS-embedded accelerometers: Preliminary insights for the monitoring of neuromuscular fatigue on the field. J. Sport. Sci. Med. 2015, 14, 698–701. [Google Scholar]
- Aughey, R.J. Applications of GPS technologies to field sports. Int. J. Sports Physiol. Perform. 2011, 6, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.; Scott, T.; Kelly, V. The validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016, 30, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Portas, M.D.; Harley, J.A.; Barnes, C.A.; Rush, C.J. The validity and reliability of 1-Hz and 5-Hz Global Positioning Systems for linear, multidirectional, and soccer-specific activities. Int. J. Sports Physiol. Perform. 2010, 5, 448–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sport. Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballal, M.S.; Usuelli, F.G.; Montrasio, U.A.; Molloy, A.; La Barbera, L.; Villa, T.; Banfi, G. Rotational and peak torque stiffness of rugby shoes. Foot 2014, 24, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Tornese, D.Z.; Anasetti, F.; Bersini, S.; Volpi, P.; La Barbera, L.; Villa, T. Does soccer cleat design influence the rotational interaction with the playing surface? Sport. Biomech. 2013, 12, 293–301. [Google Scholar] [CrossRef]
- Wannop, J.W.; Luo, G.; Stefanyshyn, D.J. Footwear traction at different areas on artificial and natural grass fields. Sport. Eng. 2012, 15, 111–116. [Google Scholar] [CrossRef]
- Grund, T.; Senner, V. Traction behavior of soccer shoe stud designs under different game-relevant loading conditions. Procedia Eng. 2010, 2, 2783–2788. [Google Scholar] [CrossRef] [Green Version]
- Kuhlman, S.; Sabick, M.; Pfeiffer, R.; Cooper, B.; Forhan, J. Effect of loading condition on the traction coefficient between shoes and artificial turf surfaces. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2010, 224, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Lambson, R.B.; Barnhill, B.S.; Higgins, R.W. Football Cleat Design and Its Effect Anterior Cruciate Ligament Injuries Prospective Study. Am. J. Sports Med. 1996, 24, 155–159. [Google Scholar] [CrossRef]
- McNitt, S.A.; Middour, O.R.; Waddington, V.D. Development and Evaluation of a Method to measure Traction on Turfgrass surfaces. J. Test. Eval. 1997, 25, 99–107. [Google Scholar]
- Schrier, N.M.; Wannop, J.W.; Lewinson, R.T.; Worobets, J.; Stefanyshyn, D. Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Sci. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Torg, J.S.; Quedenfeld, T.C.; Landau, S. The shoe-surface interface and its relationship to football knee injuries. Am. J. Sports Med. 1974, 2, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Twomey, D.M.; Connell, M.; Petrass, L.; Otago, L. The effect of stud configuration on rotational traction using the studded boot apparatus. Sport. Eng. 2013, 16, 21–27. [Google Scholar] [CrossRef]
- Villwock, M.R.; Meyer, E.G.; Powell, J.W.; Fouty, A.J.; Haut, R.C. Football playing surface and shoe design affect rotational traction. Am. J. Sports Med. 2009, 37, 518–525. [Google Scholar] [CrossRef]
- Sterzing, T.; Hennig, E.M. The Influence of Friction Properties of Shoe Upper Materials on Kicking Velocity in Soccer. J. Biomech. 2007, 40, S195. [Google Scholar] [CrossRef]
- Kaila, R. Influence of modern studded and bladed soccer boots and sidestep cutting on knee loading during match play conditions. Am. J. Sports Med. 2007, 35, 1528–1536. [Google Scholar] [CrossRef]
- Müller, C.; Sterzing, T.; Lange, J.; Milani, T.L. Comprehensive evaluation of player-surface interaction on artificial soccer turf. Sport. Biomech. 2010, 9, 193–205. [Google Scholar] [CrossRef]
- Smith, N.; Dyson, R.; Janaway, L. Ground reaction force measures when running in soccer boots and soccer training shoes on a natural turf surface. Sport. Eng. 2010, 7, 159–167. [Google Scholar] [CrossRef]
- Labbé, R.; Boucher, J.-P.; Blanchard, S. Instrumented shoe with studs. 2018, France. Available online: https://patents.google.com/patent/FR3086511A1/en (accessed on 28 September 2018).
- Arendse, R.E.; Noakes, T.D.; Azevedo, L.B.; Romanov, N.; Schwellnus, M.P.; Fletcher, G. Reduced Eccentric Loading of the Knee with the Pose Running Method. Med. Sci. Sports Exerc. 2004, 36, 272–277. [Google Scholar] [CrossRef] [Green Version]
- FFF. Règlement des Terrains et Installations Sportives; FFF: Clairefontaine, France, 2014. [Google Scholar]
- Oudshoorn, B.; Driscoll, H.; Dunn, M.; Senior, T.; James, D. Development of a test method for assessing laceration injury risk of individual cleats during game-relevant loading conditions†. Footwear Sci. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Lafortune, M.A. Ground reaction forces in distance running. J. Biomech. 1980, 13, 397–406. [Google Scholar] [CrossRef]
- Breine, B.; Malcolm, P.; Galle, S.; Fiers, P.; Frederick, E.C.; De Clercq, D. Running speed-induced changes in foot contact pattern influence impact loading rate. Eur. J. Sport Sci. 2018, 19, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.A.; Pupo, J.D.; Reis, D.C.; Borges, L.B.; Moro, A.R.P.; Noé, B.G. Validity of two methods for estimation of vertical jump height. J. Strength Cond. Res. 2011, 25, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; Bates, B.T.; Knutzen, K.M.; Sawhill, J.A. Variations in ground reaction force parameters at different running speeds. Hum. Mov. Sci. 1983, 2, 47–56. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Kluitenberg, B.; Bredeweg, S.W.; Zijlstra, S.; Zijlstra, W.; Buist, I. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet. Disord. 2012, 13, 235. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, P.R. The Biomechanics of Lower Extremity Action in Distance Running. Foot Ankle Int. 1987, 7, 197–217. [Google Scholar] [CrossRef]
- Munro, F.; Miller, D.I.; Fuglevand, A.J. Reaction Forces in Running: A reexamination. J. Biomech. 1987, 20, 147–155. [Google Scholar] [CrossRef]
- Nilsson, J.; Thorstensson, A. Ground Reaction Forces At Differents Speeds of Huan Walkin and Running.Pdf. Acta Physiol. 1989, 136, 217–227. [Google Scholar] [CrossRef]
- Harry, J.R.; Barker, L.A.; Mercer, J.A.; Dufek, J.S. Vertical and Horizontal Impact Force Comparison during Jump Landings with and Without Rotation in NCAA Division i Male Soccer Players. J. Strength Cond. Res. 2017, 31, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.P.; Hickok, M.; Cohen, J.A.; Virgile, A.; Connolly, D.A.J. Is there a biomechanically efficient vertical ground reaction force profile for countermovement jumps? Transl. Sport. Med. 2021, 4, 138–146. [Google Scholar] [CrossRef]
- FIFA. FIFA Quality Programme for Football Turf: Handbook of Test Methods; FIFA: Zurich, Switzerland, 2015. [Google Scholar]
- IAAF. IAAF Certification System Track and Runway Synthetic Surface Testing Specifications; IAAF: Monaco, Monaco, 2016. [Google Scholar]
- Colino, E.; Felipe, J.L.; Van Hooren, B.; Gallardo, L.; Meijer, K.; Lucia, A.; Lopez-Fernandez, J.; Garcia-Unanue, J. Mechanical properties of treadmill surfaces compared to other overground sport surfaces. Sensors 2020, 20, 3822. [Google Scholar] [CrossRef] [PubMed]
- Navarro-santana, M.J.; Asín-izquierdo, I.; Gómez-chiguano, G.F.; Albert-lucena, D.; Plaza-manzano, G.; Pérez-silvestre, Á.; Asín-izquierdo, I.; Gómez-chiguano, G.F.; Albert-lucena, D. Effects of two exercise programmes on joint position sense, dynamic balance and countermovement jump in male amateur football players. A randomised controlled trial. J. Sports Sci. 2020, 38, 2620. [Google Scholar] [CrossRef] [PubMed]
- McClay, I.S.; Robinson, J.R.; Andriacchi, T.P.; Frederick, E.C.; Gross, T.; Martin, P.; Valiant, G.; Williams, K.R.; Cavanagh, P.R. A Profile of Ground Reaction Forces in Professional Basketball. J. Appl. Biomech. 1994, 10, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Ortega, D.R.; Bíes, E.C.R.; Berral de la Rosa, F.J. Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. J. Sport. Sci. Med. 2010, 9, 282–287. [Google Scholar]
- Barnett, S.; Cunningham, J.L.; Steven, W. A Comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform Sue. Clin. Biomech. 2001, 16, 353–357. [Google Scholar] [CrossRef]
- DeBerardinis, J.; Dufek, J.S.; Trabia, M.B.; Lidstone, D.E. Assessing the validity of pressure-measuring insoles in quantifying gait variables. J. Rehabil. Assist. Technol. Eng. 2018, 5, 205566831775208. [Google Scholar] [CrossRef] [Green Version]
- Renner, K.E.; Blaise Williams, D.S.; Queen, R.M. The reliability and validity of the Loadsol® under various walking and running conditions. Sensors 2019, 19, 265. [Google Scholar] [CrossRef] [Green Version]
Movement | Parameter | Description |
---|---|---|
Running | Fz1 | Initial peak of the vertical GRF, normalized to BW. |
Fz2 | Propulsive peak of the vertical GRF, normalized to BW. | |
LR | Loading Rate, calculated as the maximal value of the derivative of the vertical GRF, in BW/s. | |
Mean force | Mean vertical force value, normalized in BW. | |
tFz1 | Time from foot strike to Fz1 peak, in ms. | |
tFz2 | Time from foot strike to Fz2 peak, in ms. | |
CT | Contact Time, time from foot strike to toe-off, in ms. | |
CMJ | FzTO | Maximal value of vertical GRF during the take-off phase of the CMJ, normalized to BW. |
FzLan | Maximal value of the vertical GRF during the landing phase of the CMJ, normalized to BW. | |
tFzLan | Time from landing phase ground contact to FzLan, in ms | |
JH | Jumping Height during the CMJ, in cm. |
Movement | Parameter | FP Mean ± SD | IS Mean ± SD | ICC (3,1) [95% CI] | Mean Diff (LOA) (Lower Lim, Upper Lim) | RLOA (%) |
---|---|---|---|---|---|---|
Running | Fz1 (BW) | 1.52 ± 0.32 | 1.45 ± 0.31 | 0.97 [0.96, 0.98] | −0.06 (−0.2,0.08) | −4.3 |
Fz2 (BW) | 2.02 ± 0.09 | 2.05± 0.11 | 0.89 [0.86, 0.92] | 0.02 (−0.07, 0.12) | 1.2 | |
LR (BW/s) | 145.63± 38.3 | 138.72 ± 34.65 | 0.97 [0.96, 0.98] | −6.92 (−23.8, 9.94) | −4.9 | |
Mean force (BW) | 1.26 ± 0.05 | 1.25 ± 0.05 | 0.86 [0.81, 0.89] | 0.00 (−0.06, 0.05) | −0.5 | |
tFz1 (ms) | 16.38 ± 2.13 | 16.30 ± 2.37 | 0.73 [0.65, 0.80] | −0.08 (−3.30, 3.13) | −0.5 | |
tFz2 (ms) | 114.6 ± 10.5 | 114.6 ± 10.9 | 0.79 [0.73, 0.85] | 0.00 (−13.55, 13.56) | 0.0 | |
CT (ms) | 278.59 ± 13.82 | 279.15 ± 13.3 | 0.97 [0.96, 0.97] | 0.55 (−5.48, 6.60) | 0.2 | |
CMJ | FzTO (BW) | 2.44 ± 0.18 | 2.73 ± 0.24 | 0.70 [0.51, 0.83] | 0.29 (−0.03, 0.61) | 11.3 |
FzLan (BW) | 3.20 ± 0.51 | 3.18 ± 0.52 | 0.94 [0.90, 0.97] | −0.03 (−0.37, 0.31) | −0.9 | |
tFzLan (ms) | 80.17 ± 15.58 | 84.14 ± 15.37 | 0.81 [0.68, 0.89] | −3.97 (−14.58, 22.53) | 4.8 | |
JH (cm) | 30.15 ± 4.03 | 29.89 ± 4.02 | 1.00 [1.00, 1.00] | −0.26 (−0.55, 0.04) | −0.9 |
Parameter | 3 m/s | 4 m/s | 5 m/s | F-Ratio |
---|---|---|---|---|
Fz1 (BW) | 1.39 ± 0.44 | 1.66 ± 0.49 | 1.76 ± 0.55 | 19.24 *** |
Fz2 (BW) | 1.46 ± 0.39 | 1.64 ± 0.49 | 1.68 ± 0.49 | 19.40 *** |
LR (BW/s) | 80.01 ± 32.27 | 109.08 ± 39.46 | 137.07 ± 57.93 | 120.60 *** |
Mean (BW) | 0.99 ± 0.21 | 1.12 ± 0.27 | 1.14 ± 0.27 | 31.96 *** |
tFz1 (ms) | 32.13 ± 13.27 | 25.94 ± 5.57 | 22.05 ± 6.18 | 35.33 *** |
tFz2 (ms) | 89.92 ± 22.33 | 80.98 ± 20.23 | 66.22 ± 17.47 | 96.20 *** |
CT (ms) | 225.73 ± 36.37 | 197.46 ± 29.55 | 165.45 ± 25.93 | 272.35 *** |
Parameter | Mean (±SD) |
---|---|
FzTO (BW) | 0.78 ± 0.45 |
FzLan (BW) | 1.77 ± 0.54 |
tFzLan (BW/s) | 57.85 ± 14.77 |
JH (cm) | 33.65 ± 5.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karamanoukian, A.; Boucher, J.-P.; Labbé, R.; Vignais, N. Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces. Sensors 2022, 22, 3673. https://doi.org/10.3390/s22103673
Karamanoukian A, Boucher J-P, Labbé R, Vignais N. Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces. Sensors. 2022; 22(10):3673. https://doi.org/10.3390/s22103673
Chicago/Turabian StyleKaramanoukian, Alexandre, Jean-Philippe Boucher, Romain Labbé, and Nicolas Vignais. 2022. "Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces" Sensors 22, no. 10: 3673. https://doi.org/10.3390/s22103673
APA StyleKaramanoukian, A., Boucher, J. -P., Labbé, R., & Vignais, N. (2022). Validation of Instrumented Football Shoes to Measure On-Field Ground Reaction Forces. Sensors, 22(10), 3673. https://doi.org/10.3390/s22103673