A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Preparation
2.2. Reagents and Materials for Measurements
2.3. Apparatus
2.4. Procedure
3. Results and Discussion
3.1. Sensor Surface Morphology
3.2. Response of the Sensor
3.3. Determination of the Sensor Selectivity
3.4. The pH Influence
3.5. TBZ Determination
3.5.1. In Aqueous Samples
3.5.2. In Real Samples
3.6. The Lifetime of the Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estevez, M.C.; Belenguer, J.; Gomez-Montes, S.; Miralles, J.; Escuela, A.M.; Montoya, A.; Lechuga, L.M. Indirect Competitive Immunoassay for the Detection of Fungicide Thiabendazole in Whole Orange Samples by Surface Plasmon Resonance. Analyst 2012, 137, 5659–5665. [Google Scholar] [CrossRef] [PubMed]
- Alsammarraie, F.K.; Lin, M.; Mustapha, A.; Lin, H.; Chen, X.; Chen, Y.; Wang, H.; Huang, M. Rapid Determination of Thiabendazole in Juice by SERS Coupled with Novel Gold Nanosubstrates. Food Chem. 2018, 259, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; David, L.; Chiş, V.; Pînzaru, S.C. Detection of Thiabendazole Applied on Citrus Fruits and Bananas Using Surface Enhanced Raman Scattering. Food Chem. 2014, 145, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Anastassiadou, M.; Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; et al. Modification of the Existing Maximum Residue Levels and Setting of Import Tolerances for Thiabendazole in Various Crops. EFSA J. 2021, 19, e06586. [Google Scholar] [CrossRef]
- Séïde, M.; Marion, M.; Mateescu, M.A.; Averill-Bates, D.A. The Fungicide Thiabendazole Causes Apoptosis in Rat Hepatocytes. Toxicol. Vitr. 2016, 32, 232–239. [Google Scholar] [CrossRef]
- Dalvie, D.; Smith, E.; Deese, A.; Bowlin, S. In Vitro Metabolic Activation of Thiabendazole via 5-Hydroxythiabendazole: Identification of a Glutathione Conjugate of 5-Hydroxythiabendazoles. Drug Metab. Dispos. 2006, 34, 709–717. [Google Scholar] [CrossRef]
- Stierum, R.; Conesa, A.; Heijne, W.; Van Ommen, B.; Junker, K.; Scott, M.P.; Price, R.J.; Meredith, C.; Lake, B.G.; Groten, J. Transcriptome Analysis Provides New Insights into Liver Changes Induced in the Rat upon Dietary Administration of the Food Additives Butylated Hydroxytoluene, Curcumin, Propyl Gallate and Thiabendazole. Food Chem. Toxicol. 2008, 46, 2616–2628. [Google Scholar] [CrossRef]
- Groten, J.P.; Butler, W.; Feron, V.J.; Kozianowski, G.; Renwick, A.G.; Walker, R. An Analysis of the Possibility for Health Implications of Joint Actions and Interactions between Food Additives. Regul. Toxicol. Pharmacol. 2000, 31, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Dumancas, G.G.; Hikkaduwa Koralege, R.S.; Mojica, E.R.E.; Murdianti, B.S.; Pham, P.J. Thiabendazole. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 533–536. ISBN 9780123864543. [Google Scholar]
- Tsialla, Z.; Ucles-Moreno, A.; Petrou, P.; Fernandez-Alba, A.R.; Kakabakos, S.E. Development of an Indirect Enzyme Immunoassay for the Determination of Thiabendazole in White and Red Wines. Int. J. Environ. Anal. Chem. 2015, 95, 1299–1309. [Google Scholar] [CrossRef]
- Liang, G.; Guo, X.; Tan, X.; Mai, S.; Chen, Z.; Zhai, H. Molecularly Imprinted Monolithic Column Based on Functionalized β-Cyclodextrin and Multi-Walled Carbon Nanotubes for Selective Recognition of Benzimidazole Residues in Citrus Samples. Microchem. J. 2019, 146, 1285–1294. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, X.; Guo, J.; Guo, Y.; Lan, C.; Xie, F.; Zong, S.; He, L.; Zhang, S. Evaluation of Sulfonic Acid Functionalized Covalent Triazine Framework as a Hydrophilic-Lipophilic Balance/Cation-Exchange Mixed-Mode Sorbent for Extraction of Benzimidazole Fungicides in Vegetables, Fruits and Juices. J. Chromatogr. A 2020, 1618, 460847. [Google Scholar] [CrossRef] [PubMed]
- Gionfriddo, E.; Gruszecka, D.; Li, X.; Pawliszyn, J. Direct-Immersion SPME in Soy Milk for Pesticide Analysis at Trace Levels by Means of a Matrix-Compatible Coating. Talanta 2020, 211, 120746. [Google Scholar] [CrossRef]
- Fares, N.V.; Hassan, Y.A.A.; Hussein, L.A.; Ayad, M.F. Determination of Fungicides’ Residues and Their Degradation Kinetics in Orange Tree Fruits Using Liquid Chromatography—Tandem Mass Spectrometry Coupled with QuEChERS Method. Microchem. J. 2021, 168, 106376. [Google Scholar] [CrossRef]
- Castilla-Fernández, D.; Moreno-González, D.; Bouza, M.; Saez-Gómez, A.; Ballesteros, E.; García-Reyes, J.F.; Molina-Díaz, A. Assessment of a Specific Sample Cleanup for the Multiresidue Determination of Veterinary Drugs and Pesticides in Salmon Using Liquid Chromatography/Tandem Mass Spectrometry. Food Control 2021, 130, 108311. [Google Scholar] [CrossRef]
- Wang, S.Y.; Shi, X.C.; Zhu, G.Y.; Zhang, Y.J.; Jin, D.Y.; Zhou, Y.D.; Liu, F.Q.; Laborda, P. Application of Surface-Enhanced Raman Spectroscopy Using Silver and Gold Nanoparticles for the Detection of Pesticides in Fruit and Fruit Juice. Trends Food Sci. Technol. 2021, 116, 583–602. [Google Scholar] [CrossRef]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-Free Au NRs-Based SERS Coupled with Chemometrics for Rapid Quantitative Detection of Thiabendazole Residues in Citrus. Food Chem. 2022, 375, 131681. [Google Scholar] [CrossRef]
- Tuzen, M.; Altunay, N.; Elik, A.; Afshar Mogaddam, M.R.; Katin, K. Experimental and Theoretical Investigation for the Spectrophotometric Determination of Thiabendazole in Fruit Samples. Microchem. J. 2021, 168, 106488. [Google Scholar] [CrossRef]
- Piccirilli, G.N.; Escandar, G.M. Flow Injection Analysis with On-Line Nylon Powder Extraction for Room-Temperature Phosphorescence Determination of Thiabendazole. Anal. Chim. Acta 2009, 646, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kazemifard, N.; Ensafi, A.A.; Rezaei, B. Green Synthesized Carbon Dots Embedded in Silica Molecularly Imprinted Polymers, Characterization and Application as a Rapid and Selective Fluorimetric Sensor for Determination of Thiabendazole in Juices. Food Chem. 2020, 310, 125812. [Google Scholar] [CrossRef]
- Ribeiro, F.W.P.; de Oliveira, R.C.; de Oliveira, A.G.; Nascimento, R.F.; Becker, H.; de Lima-Neto, P.; Correia, A.N. Electrochemical Sensing of Thiabendazole in Complex Samples Using Boron-Doped Diamond Electrode. J. Electroanal. Chem. 2020, 866, 114179. [Google Scholar] [CrossRef]
- Volnyanska, O.V.; Mironyak, M.O.; Manzuk, M.V.; Labyak Oksana, V.; Nikolenko, N.V.; Kovalenko, V.L.; Kotok, V.A. The Potentiometric Sensor for Determination of Thiabendazole. J. Eng. Appl. Sci. 2020, 15, 1088–1093. [Google Scholar]
- Budetić, M.; Samardžić, M.; Ravnjak, G.; Dandić, A.; Živković, P.; Széchenyi, A. A New Solid-State Anionic Surfactant-Selective Sensor Based on Functionalized MWCNT. Talanta 2021, 226, 122196. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, M.; Naderi, S.; Montazerozohori, M.; Taghizadeh, F.; Asghari, A. Chemically Modified Multiwalled Carbon Nanotube Carbon Paste Electrode for Copper Determination. Arab. J. Chem. 2017, 10, S2934–S2943. [Google Scholar] [CrossRef] [Green Version]
- Hajduković, M.; Samardžić, M.; Galović, O.; Széchenyi, A.; Sak-Bosnar, M. A Functionalized Nanomaterial Based, New, Solid State Cationic-Surfactant-Selective Sensor with Fast Response and Low Noise. Sens. Actuators B Chem. 2017, 251, 795–803. [Google Scholar] [CrossRef]
- Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Study on Amino-Functionalized Multiwalled Carbon Nanotubes. Mater. Sci. Eng. A 2007, 464, 151–156. [Google Scholar] [CrossRef]
- Parra, E.J.; Blondeau, P.; Crespo, G.A.; Rius, F.X. An Effective Nanostructured Assembly for Ion-Selective Electrodes. An Ionophore Covalently Linked to Carbon Nanotubes for Pb2+ Determination. Chem. Commun. 2011, 47, 2438–2440. [Google Scholar] [CrossRef]
- Devereux, M.; McCann, M.; Shea, D.O.; Kelly, R.; Egan, D.; Deegan, C.; Kavanagh, K.; McKee, V.; Finn, G. Synthesis, Antimicrobial Activity and Chemotherapeutic Potential of Inorganic Derivatives of 2-(4′-Thiazolyl)Benzimidazole{thiabendazole}: X-Ray Crystal Structures of [Cu(TBZH)2Cl]Cl·H2O·EtOH and TBZH2NO3 (TBZH=thiabendazole). J. Inorg. Biochem. 2004, 98, 1023–1031. [Google Scholar] [CrossRef]
- Buck, R.P.; Lindner, E. Recomendations for Nomenclature of Ion-Selective Electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational Design of All-Solid-State Ion-Selective Electrodes and Reference Electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Bakker, E.; Crespo, G.; Grygolowicz-Pawlak, E.; Mistlberger, G.; Pawlak, M.; Xie, X. Advancing Membrane Electrodes and Optical Ion Sensors. Chimia 2011, 65, 141–149. [Google Scholar] [CrossRef]
- Crespo, G.A.; Macho, S.; Bobacka, J.; Rius, F.X. Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Anal. Chem. 2009, 81, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric Selectivity Coefficients of Ion-Selective Electrodes Part I. Inorganic Cations (Technical Report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Volnyanska, O.V.; Labyak Oksana, V.; Blazheyevskiy, M.Y.; Brizitskiy, O.A.; Tkach, V.I. Amperometric and Spectrophotometric Determination of Food Additive Thiabendazole (E-233) in Bananas. Int. J. Adv. Pharm. Biol. Chem. 2016, 5, 271–281. [Google Scholar]
- Maccà, C. Response Time of Ion-Selective Electrodes: Current Usage versus IUPAC Recommendations. Anal. Chim. Acta 2004, 512, 183–190. [Google Scholar] [CrossRef]
- Eggins, B.R. Chemical Sensors and Biosensors; Wiley: Hoboken, NJ, USA, 2002; ISBN 9780471899136. [Google Scholar]
Parameters | |
---|---|
Slope (mV/decade of activity) | 60.4 ± 0.8 |
Standard error | 1.6 |
Correl. coeff. (R2) | 0.9991 |
Detection limit (M) | 6.2 × 10−7 |
Useful conc. range (M) | 8.6 × 10−7–1.0 × 10−3 |
Type of the Electrode | ISE with Liquid Membrane and Inner Electrolyte | ISE with Liquid Membrane and Inner Electrolyte | Solid-State ISE with Liquid Membrane |
---|---|---|---|
Ionophore | (TBZ)3(PMo12O40)2 1 | (TBZH2)3(PMo12O40)2 2 | MWCNT-OSO3−TBZ+ |
Slope [mV/decade of activity] | 30 | 30 | 60.4 ± 0.8 |
Detection limit [M] | 1.00 × 10−5 | - | 6.2 × 10−7 |
Useful conc. range [M] | 1.0 × 10−5–1.0 × 10−2 | 1.0 × 10−5–1.0 × 10−2 | 8.6 × 10−7–1.0 × 10−3 |
Dynamic response [s] | 40–50 (c = 10−3–10−2 M); 120–180 (c = 10−6–10−4 M) | 40–50 (c = 10−3–10−2 M); 120–180 (low concentration) | 8 (c = 5.0 × 10−7–1.0 × 10−4) |
Working pH range | 4–5 | 3–4 | 2–4 |
Lifetime [days] | 65 | 60–65 | 90 |
Ref. | [22] | [34] | This work |
Interference | |
---|---|
Ammonium | 5.60 × 10−4 |
Sodium | 3.42 × 10−4 |
Calcium | 7.20 × 10−5 |
Magnesium | 1.60 × 10−5 |
Ascorbic acid | 8.34 × 10−4 |
Citric acid | 3.70 × 10−3 |
Potassium | 5.42 × 10−4 |
Copper | 3.59 × 10−3 |
Zinc | 4.36 × 10−4 |
Lithium | 2.05 × 10−4 |
Iron (III) | 3.10 × 10−3 |
Iron (II) | 2.34 × 10−3 |
Glucose | 2.51 × 10−4 |
Fructose | 2.21 × 10−4 |
Carbaryl | 2.73 × 10−2 |
Fuberidazole | 5.03 × 10−2 |
TBZ Added (M) | TBZ Found (M) ± SD | Recovery (%) | ||
---|---|---|---|---|
Direct Potentiometry | Gran Method | Direct Potentiometry | Gran Method | |
5.00 × 10−4 | 4.74 × 10−4 ± 4.75 × 10−6 | 4.96 × 10−4 ± 5.30 × 10−6 | 94.8 | 99.2 |
1.00 × 10−4 | 1.08 × 10−4 ± 7.23 × 10−6 | 1.03 × 10−4 ± 1.45 × 10−6 | 108.0 | 103.0 |
5.00 × 10−5 | 5.18 × 10−5 ± 5.28 × 10−7 | 5.20 × 10−5 ± 8.06 × 10−7 | 103.6 | 104.0 |
1.00 × 10−5 | 1.05 × 10−5 ± 6.39 × 10−7 | 1.13 × 10−5 ± 4.88 × 10−7 | 105.0 | 113.0 |
5.00 × 10−6 | 4.09 × 10−6 ± 1.85 × 10−7 | 5.60 × 10−6 ± 2.36 × 10−7 | 81.8 | 112.0 |
Sample | TBZ Found (M) ± SD | TBZ Found (mg/g of the Peel) | Standard Addition Method | ||
---|---|---|---|---|---|
TBZ Added (mol) | TBZ Found (mol) | Recovery (%) | |||
Orange | 2.34 × 10−4 ± 1.65 × 10−5 | 0.078 | 1.00 × 10−5 | 9.51 × 10−6 ± 3.90 × 10−7 | 95.1 |
Lemon | 3.29 × 10−4 ± 3.28 × 10−5 | 0.129 | 1.00 × 10−5 | 1.07 × 10−5 ± 5.73 × 10−7 | 107.0 |
Banana | 2.39 × 10−4 ± 2.88 × 10−5 | 0.089 | 1.00 × 10−5 | 1.10 × 10−5 ± 2.54 × 10−7 | 110.0 |
Clementine | 1.70 × 10−4 ± 8.98 × 10−6 | 0.055 | 1.00 × 10−5 | 1.03 × 10−5 ± 3.77 × 10−7 | 103.0 |
Lime | 1.53 × 10−4 ± 7.52 × 10−6 | 0.062 | 1.00 × 10−5 | 1.05 × 10−5 ± 8.53 × 10−7 | 105.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dandić, A.; Novak, I.; Jozanović, M.; Pukleš, I.; Széchenyi, A.; Budetić, M.; Samardžić, M. A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. Sensors 2022, 22, 3785. https://doi.org/10.3390/s22103785
Dandić A, Novak I, Jozanović M, Pukleš I, Széchenyi A, Budetić M, Samardžić M. A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. Sensors. 2022; 22(10):3785. https://doi.org/10.3390/s22103785
Chicago/Turabian StyleDandić, Andrea, Ivana Novak, Marija Jozanović, Iva Pukleš, Aleksandar Széchenyi, Mateja Budetić, and Mirela Samardžić. 2022. "A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor" Sensors 22, no. 10: 3785. https://doi.org/10.3390/s22103785
APA StyleDandić, A., Novak, I., Jozanović, M., Pukleš, I., Széchenyi, A., Budetić, M., & Samardžić, M. (2022). A New, MWCNT-Based, Solid-State Thiabendazole-Selective Sensor. Sensors, 22(10), 3785. https://doi.org/10.3390/s22103785