Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Friedlander Waveform
2.2. The Kingery and Bulmash Data
2.3. Definitions of the Cut-off Frequency, Resonant Frequency and Frequency Bandwidth of Pressure Sensors
3. Frequency Bandwidth of Pressure Sensors for Blast Experiments
3.1. Preliminary Obsevations on Large-Scale/Far-Field and Small-Scale/Near-Field Experiments
3.2. Response Time of a Pressure Sensor Dedicated to Blast Wave Experiments
3.3. Accuracy of the Overpressure Peak Estimation from Pressure Sensor in Blast Experiments
3.4. Sensor Bandwidth Needed to Ensure a Desired Estimation Accuracy on the Overpressure Magnitude
3.5. Minimal Distance between the Sensor and Explosive Load to Ensure a Desired Estimation Accuracy on the Overpressure Peak Magnitude
3.6. Accuracy of the Overpressure Peak Estimation as a Function of the Sensor Bandwidth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinney, G.F.; Graham, K.J. Explosive Shocks in Air; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Kingery, C.N.; Bulmash, G. Air Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst. US Technical Report ARBRL-TR-02555; Ballistics Research Laboratory, Aberdeen Proving Ground: Aberdeen, MD, USA, 1984. [Google Scholar]
- Esparza, E.D. Blast measurements and equivalency for spherical loads at small scaled distances. Int. J. Impact Eng. 1986, 4, 23–40. [Google Scholar] [CrossRef]
- Sadot, O.; Ram, O.; Nof, E.; Kochavi, E.; Ben-Dor, G. Small-Scale Blast Wave Experiments by Means of an Exploding Wire. In Blast Effects. Shock Wave and High-Pressure Phenomena; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Genetier, M.; Lefrançois, A.; Suarez, J.; Lecysyn, N.; Lavayssière, M.; Baudin, G. Secondary shock measurement comparison and validation to implement the post-combustion model. In Proceedings of the 25th International Symposium on Military Aspects of Blast and Shock (MABS), Hague, The Netherlands, 23 September 2018. [Google Scholar]
- Tyas, A. Experimental Measurement of Pressure Loading from Near-Field Blast Events: Techniques, Findings and Future Challenges. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 471. [Google Scholar] [CrossRef] [Green Version]
- Rigby, S.E.; Tyas, A.; Fay, S.D.; Clarke, S.D.; Warren, J.A. Validation of semi-empirical blast pressure predictions for far field explosions—Is there inherent variability in blast wave parameters? In Proceedings of the 6th International Conference on Protection of Structures against Hazards, Tianjin, China, 16–17 October 2014. [Google Scholar]
- Filice, A.; Mynarz, M.; Zinno, R. Experimental and Empirical Study for Prediction of Blast Loads. Appl. Sci. 2022, 12, 2691. [Google Scholar] [CrossRef]
- Dewey, J.M. The Rankine–Hugoniot Equations: Their Extensions and Inversions Related to Blast Waves; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Guerke, G.H. Evaluation of blast pressure measurements. In Proceedings of the 12th International. Symposium Mil. Aspects of Blast and Shock (MABS), Perpignan, France, 1990. Available online: https://www.mabs.ch/spiez-base/mabs-11-to-15/mabs-12/ (accessed on 8 April 2022).
- Watts, D.B.; Tassel, V. Transducer Development for Explosive Measurements. Available online: https://apps.dtic.mil/sti/pdfs/ADA208615.pdf (accessed on 8 April 2022).
- Riondet, J.; Pons, P.; Aubert, H.; Lavayssière, M.; Luc, J.; Lefrançois, A. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges. J. Phys. Conf. Ser. 2017, 922, 012019. [Google Scholar] [CrossRef]
- Sanchez, K.; Achour, B.; Riondet, J.; Anglade, L.; Carrera, M.; Coustou, A.; Lecestre, A.; Charlot, S.; Aubert, H.; Lavayssière, M.; et al. Design, Fabrication and Characterization of a Novel Piezoresistive Pressure Sensor for Blast Waves Monitoring. In Proceedings of the SENSOR-DEVICES 2021, 12th International Conference on Sensor Device Technologies and Applications, Athènes, Greece, 14–18 November 2021. [Google Scholar]
- Li, Y.; Yang, Z.; Wang, G.; Yang, C. Research on piezoelectric pressure sensor for shock wave load measurement. ISA Trans. 2020, 104, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Wang, J.; Qiu, J. Miniature High-Frequency Response, High-Pressure-Range Dynamic Pressure Sensor Based on All-Silica Optical Fiber Fabry-Perot Cavity. IEEE Sens. J. 2021, 21, 13296–13304. [Google Scholar] [CrossRef]
- Rahman, S.; Timofeev, E.; Kleine, H. Pressure measurements in laboratory-scale blast wave flow fields. Rev. Sci. Instrum. 2007, 78, 125106. [Google Scholar] [CrossRef] [PubMed]
- Kleine, H.; Timofeev, E.V.; Takaama, K. Laboratory-scale blast wave phenomena—Optical diagnostics and applications. Shock Waves 2005, 14, 343–357. [Google Scholar] [CrossRef]
- Needham, C.E. Blast Wave; Springer: Berlin/Heidelberg, Germany, 2018; p. 3. [Google Scholar] [CrossRef]
- Dewey, J.M. The Friedlander Equations. In Blast Effects; Shock Wave and High-Pressure Phenomena; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Karlos, V.; Solomos, G.; Larcher, M. Analysis of the blast wave decay coefficient using the Kingery–Bulmash data. Int. J. of Prot. Str. 2016, 7, 409–429. [Google Scholar] [CrossRef] [Green Version]
- UFC 3-340-02 U.S. Army Corps of Engineers, Naval Facilities Engineering Command, Air Force Civil Engineer Support Agency. Technical Manuals, Unified Facilities Criteria (UFC), Structures to Resist the Effects of Accidental Explosions. Available online: https://www.wbdg.org/FFC/DOD/UFC/ARCHIVES/ufc_3_340_02.pdf (accessed on 8 April 2022).
- Jeon, D.; Kim, K.; Han, S. Modified Equation of Shock Wave Parameters. Computation 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Hyde, D.W. Conventional Weapons Program (ConWep); U.S. Army Waterways Experimental Station: Vicksburg, MS, USA, 1991. [Google Scholar]
- Randers-Pehrson, G.; Bannister, K.A. Airblast loading model for DYNA2D and DYNA3D; ARL-TR-1310; U.S. Army Research Laboratory, Aberdeen Proving Ground: Aberdeen, MD, USA, 1997. [Google Scholar]
- Kistler Piezotron® Miniature, High Sensitivity, Voltage Output Pressure Sensors Type 211B. Available online: http://www.ibselectronics.com/ibsstore/datasheet/Pressure_Model_211B.pdf (accessed on 8 April 2022).
- Veyrunes, J.; Riondet, J.; Ferrand, A.; Lavayssiere, M.; Lefrancois, A.; Luc, J.; Aubert, H.; Pons, P. Transient Response of Miniaturized. In Proceedings of the IEEE 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Paris, France, 12–15 May 2019. [Google Scholar]
- Chu, A. Problems in High-Shock Measurement, TP#308, Endevco. Available online: https://www.endevco.com/contentStore/mktgContent/endevco/dlm_uploads/2019/02/TP308.pdf (accessed on 8 April 2022).
- Agnello, A.; Dosch, J.; Metz, R.; Sill, R.; Walter, P. Acceleration Sensing Technologies for Severe Mechanical Shock; PCB Piezotronics, Inc.: Depew, NY, USA; Available online: http://www.pcb.com/contentstore/MktgContent/WhitePapers/WPL_45_S_V_Shock_Paper.pdf (accessed on 8 April 2022).
- Jon, S.W. Acceleration, Shock and Vibration Sensors. In Sensor Technology Handbook; Wilson, J.S., Ed.; Newnes: Burlington, MA, USA, 2005; pp. 271–350. [Google Scholar]
- IM8500 Rev B Endevco Piezoresistive Pressure Transducers Instruction Manual. Available online: https://www.pcbpiezotronics.fr/wp-content/uploads/IM8500-Rev-B.pdf (accessed on 8 April 2022).
- Keysight Technologies. What Is the Amplitude Accuracy of My Oscilloscope. Available online: https://edadocs.software.keysight.com/kkbopen/what-is-the-amplitude-accuracy-of-my-oscilloscope-589741209.html (accessed on 8 April 2022).
- Denny, J.; Clubley, S. Evaluating long-duration blast loads on steel columns using computational fluid dynamics, Structure and Infrastructure Engineering. Struct. Infrastruct. Eng. 2019, 15, 1419–1435. [Google Scholar] [CrossRef]
- Chalnot, M.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Lefrançois, A.; Luc, J. Wireless Transmission of Friedlander Type Signals for the Dynamic Measurement of Blast Pressure. Prop. Expl. Pyro. 2021, 46, 563–571. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalnot, M.; Pons, P.; Aubert, H. Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments. Sensors 2022, 22, 3790. https://doi.org/10.3390/s22103790
Chalnot M, Pons P, Aubert H. Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments. Sensors. 2022; 22(10):3790. https://doi.org/10.3390/s22103790
Chicago/Turabian StyleChalnot, Mathieu, Patrick Pons, and Hervé Aubert. 2022. "Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments" Sensors 22, no. 10: 3790. https://doi.org/10.3390/s22103790
APA StyleChalnot, M., Pons, P., & Aubert, H. (2022). Frequency Bandwidth of Pressure Sensors Dedicated to Blast Experiments. Sensors, 22(10), 3790. https://doi.org/10.3390/s22103790