Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement
Abstract
:1. Introduction
- SPP is modeled as a sequential decision optimization problem, a framework of ERL has been proposed to solve it. As far as we know, this is the first work to apply ERL to the SPP in WSN.
- To further enhance the performance of ERL, domain knowledge is employed to improve the search ability. Extensive experiments have been conducted and the results show that the proposed algorithm outperforms traditional heuristic algorithms and DRL.
2. Related Work
2.1. Sensor Placement Problem
2.2. Evolutionary Reinforcement Learning
3. Problem Modeling and Approach Overview
3.1. Problem Modeling
3.2. Approach Overview
4. Domain Knowledge-Based Evolutionary Reinforcement Learning
4.1. Model Input with Domain Knowledge
Algorithm 1 Domain knowledge-based ERL |
|
4.2. Node Choose Action for Reinforcement Learning
4.3. Reward for Model Update for Reinforcement Learning
4.4. Evolutionary Strategy
5. Experiments
5.1. Experimental Setup
5.2. Performance Comparison among Three Algorithms
5.3. Sensitivity Analysis
5.3.1. Domain Knowledge with ERL
5.3.2. Nodes Selection Strategy with ERL
5.3.3. Population Evolution with ERL
6. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grossman, D.S.; Slusky, D.J. The impact of the Flint water crisis on fertility. Demography 2019, 56, 2005–2031. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, C.; Zhao, X.; Dong, J.; Zheng, B. Risk assessment of heavy metals in the surface sediment at the drinking water source of the Xiangjiang River in South China. Environ. Sci. Eur. 2020, 32, 23. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L.; Yan, X.; Gong, W.; Liu, X.; Wang, L. Modified NSGA-III for sensor placement in water distribution system. Inf. Sci. 2020, 509, 488–500. [Google Scholar] [CrossRef]
- Zhao, Y.; Schwartz, R.; Salomons, E.; Ostfeld, A.; Poor, H.V. New formulation and optimization methods for water sensor placement. Environ. Model. Softw. 2016, 76, 128–136. [Google Scholar] [CrossRef]
- Berry, J.; Hart, W.E.; Phillips, C.A.; Uber, J.G.; Watson, J.P. Sensor placement in municipal water networks with temporal integer programming models. J. Water Resour. Plan. Manag. 2006, 132, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Propato, M. Contamination warning in water networks: General mixed-integer linear models for sensor location design. J. Water Resour. Plan. Manag. 2006, 132, 225–233. [Google Scholar] [CrossRef]
- Morais, D.C.; de Almeida, A.T.; Figueira, J.R. A sorting model for group decision making: A case study of water losses in Brazil. Group Decis. Negot. 2014, 23, 937–960. [Google Scholar] [CrossRef]
- Haghighi, A.; Asl, A.Z. Uncertainty analysis of water supply networks using the fuzzy set theory and NSGA-II. Eng. Appl. Artif. Intell. 2014, 32, 270–282. [Google Scholar] [CrossRef]
- Li, M.; Liu, S.; Zhang, L.; Wang, H.; Meng, F.; Bai, L. Non-dominated sorting genetic algorithms-iibased on multi-objective optimization model in the water distribution system. Procedia Eng. 2012, 37, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Packer, C.; Gao, K.; Kos, J.; Krähenbühl, P.; Koltun, V.; Song, D. Assessing generalization in deep reinforcement learning. arXiv 2018, arXiv:1810.12282. [Google Scholar]
- Lee, K.; Lee, K.; Shin, J.; Lee, H. Network randomization: A simple technique for generalization in deep reinforcement learning. arXiv 2019, arXiv:1910.05396. [Google Scholar]
- Ouyang, W.; Wang, Y.; Han, S.; Jin, Z.; Weng, P. Improving Generalization of Deep Reinforcement Learning-based TSP Solvers. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 1–8. [Google Scholar]
- Lu, H.; Zhang, X.; Yang, S. A learning-based iterative method for solving vehicle routing problems. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Yolcu, E.; Póczos, B. Learning local search heuristics for boolean satisfiability. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- James, J.; Yu, W.; Gu, J. Online vehicle routing with neural combinatorial optimization and deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3806–3817. [Google Scholar]
- Khadka, S.; Tumer, K. Evolutionary reinforcement learning. arXiv 2018, arXiv:1805.07917. [Google Scholar]
- Drugan, M.M. Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms. Swarm Evol. Comput. 2019, 44, 228–246. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.X.; Chen, C. Reinforcement learning-based optimal sensor placement for spatiotemporal modeling. IEEE Trans. Cybernet. 2019, 50, 2861–2871. [Google Scholar] [CrossRef] [PubMed]
- Maschler, T.; Savic, D.A. Simplification of water supply network models through linearisation. Cent. Water Syst. Rep. 1999, 1, 119. [Google Scholar]
- Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Complex network and fractal theory for the assessment of water distribution network resilience to pipe failures. Water Sci. Technol. Water Supply 2018, 18, 767–777. [Google Scholar] [CrossRef]
- Wolsey, L.A. Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Brusco, M.J.; Stahl, S. Branch-and-Bound Applications in Combinatorial Data Analysis; Springer: New York, NY, USA, 2005; Volume 2. [Google Scholar]
- Hu, C.; Ren, G.; Liu, C.; Li, M.; Jie, W. A Spark-based genetic algorithm for sensor placement in large scale drinking water distribution systems. Clust. Comput. 2017, 20, 1089–1099. [Google Scholar] [CrossRef]
- Hu, C.; Li, M.; Zeng, D.; Guo, S. A survey on sensor placement for contamination detection in water distribution systems. Wirel. Netw. 2018, 24, 647–661. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134. [Google Scholar]
- Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016, arXiv:1611.09940. [Google Scholar]
- Nazari, M.; Oroojlooy, A.; Snyder, L.V.; Takáč, M. Reinforcement learning for solving the vehicle routing problem. arXiv 2018, arXiv:1802.04240. [Google Scholar]
- Chen, X.; Tian, Y. Learning to perform local rewriting for combinatorial optimization. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Hajgató, G.; Paál, G.; Gyires-Tóth, B. Deep Reinforcement Learning for Real-Time Optimization of Pumps in Water Distribution Systems. J. Water Resour. Plan. Manag. 2020, 146, 04020079. [Google Scholar] [CrossRef]
- Mambretti, S.; Orsi, E. Optimization of Pumping Stations in Complex Water Supply Networks through Evolutionary Computation Methods. J. Am. Water Works Assoc. 2016, E119–E125. [Google Scholar] [CrossRef]
- Khadka, S.; Majumdar, S.; Nassar, T.; Dwiel, Z.; Tumer, E.; Miret, S.; Liu, Y.; Tumer, K. Collaborative evolutionary reinforcement learning. In Proceedings of the International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 3341–3350. [Google Scholar]
- Zhang, K.; Li, Y.; Wang, J.; Cambria, E.; Li, X. Real-time video emotion recognition based on reinforcement learning and domain knowledge. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1034–1047. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, H.; Duan, Q.; Lin, L.; Shao, Y.; Wang, W.; Wang, X.; Xu, Y. Leveraging Domain Knowledge for Robust Deep Reinforcement Learning in Networking. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar]
Algorithm | GA | DRL | ERL |
---|---|---|---|
Average detection time/5 min | 1195.606 | 1278.162 | 1192.254 |
Task Index | Domain Knowledge | Select with Probability | Multi-Threaded Search | EC Operator |
---|---|---|---|---|
B | No | Yes | Yes | Yes |
Yes | No | Yes | Yes | |
Yes | Yes | No | Yes | |
D | Yes | Yes | Yes | No |
For Comparison | Yes | Yes | Yes | Yes |
Task Index | Average Detection Time/5 min | Optimal Algebra |
---|---|---|
B | 1237.8 | 174 |
1353.23 | 268 | |
1255.95 | 416 | |
D | 1217.55 | 146 |
For Comparison | 1192.25 | 137 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, M.; Hu, C.; Gong, W.; Yan, X. Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement. Sensors 2022, 22, 3799. https://doi.org/10.3390/s22103799
Song M, Hu C, Gong W, Yan X. Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement. Sensors. 2022; 22(10):3799. https://doi.org/10.3390/s22103799
Chicago/Turabian StyleSong, Mingxuan, Chengyu Hu, Wenyin Gong, and Xuesong Yan. 2022. "Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement" Sensors 22, no. 10: 3799. https://doi.org/10.3390/s22103799
APA StyleSong, M., Hu, C., Gong, W., & Yan, X. (2022). Domain Knowledge-Based Evolutionary Reinforcement Learning for Sensor Placement. Sensors, 22(10), 3799. https://doi.org/10.3390/s22103799