Analysis of LTE-M Adjacent Channel Interference in Rail Transit
Abstract
:1. Introduction
1.1. Related Literature
1.2. Motivation and Contributions
1.3. Article Structure
2. LTE-M Adjacent Channel Interference
2.1. Frequency Band Division
2.2. Principle of Adjacent Channel Interference
3. Interference Analysis of LTE-M Underground System
3.1. Interference Analysis When LTE-M Uses Directional Antenna Radiations Pattern
3.2. Interference Analysis When LTE-M Uses Leaky Cable Radiations Pattern
4. Interference Analysis of LTE-M Ground System
4.1. Network Topology
4.2. ACLR Model
4.3. Power Control
4.4. Throughput Calculation
4.5. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrus, R.; Sallent, O. Extending the LTE\/LTE-A business case: Mission- and business-critical mobile broadband communications. IEEE Veh. Technol. Mag. 2014, 9, 47–55. [Google Scholar] [CrossRef]
- Saleem, A.; He, Y. Investigation of massive MIMO channel spatial characteristics for indoor subway tunnel environment. In Proceedings of the 2021 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 November 2021; pp. 162–167. [Google Scholar]
- Wang, X.; Liu, L.; Zhu, L.; Tang, T. Train-centric CBTC meets age of information in train-to-train communications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4072–4085. [Google Scholar] [CrossRef]
- Saleem, A.; Cui, H.; He, Y.; Boag, A. Channel Propagation Characteristics for Massive MIMO Systems in Tunnel Environment. IEEE Antennas Propag. Mag. 2022, accepted. [Google Scholar]
- Wang, H.; Yu, F.R.; Jiang, H. Modeling of radio channels with leaky coaxial cable for LTE-M based CBTC systems. IEEE Commun. Lett. 2016, 20, 1038–1041. [Google Scholar] [CrossRef]
- Makoveyenko, D.; Osharovska, O.; Siden, S.; Pyliavskyi, V. The effect of interference evaluation between LTE mobile stations and McWill technology. In Proceedings of the 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 6–9 October 2020; pp. 122–126. [Google Scholar]
- Yu, H.; Chen, Y.; Wang, H.; Zhang, X.; Yang, D. Coexistence studies on the interference performance between subway CBTC system and portable Wi-Fi devices. In Proceedings of the 2014 4th IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 19–21 September 2014; pp. 191–195. [Google Scholar]
- Kim, H.-K.; Cho, Y.; Jo, H.-S. Adjacent channel compatibility evaluation and interference mitigation technique between earth station in motion and IMT-2020. IEEE Access 2020, 8, 213185–213205. [Google Scholar] [CrossRef]
- An, N.; Wang, C.; Wang, W. Interference coexistence of 5G NR and LTE system based on 2.1 GHz. In Proceedings of the 2020 12th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2020; pp. 90–94. [Google Scholar]
- Li, D.; Zhou, D.; Zhong, L. Coexistence analysis between 5G NR and LTE network at 1.8 GHz. In Proceedings of the 2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI), Sana’a, Yemen, 4–6 December 2021; pp. 1–6. [Google Scholar]
- Li, H.; Zhang, X.; Cao, L.; Hu, X.; Yang, D. Performance evaluation of interference coexistence in dense urban scenario for 5G NR system. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 823–828. [Google Scholar]
- Cai, B.; Xie, W.; Guo, H. Analysis and field trial on interference coexistence of 5G NR and 4G LTE dynamic spectrum sharing. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021; pp. 1281–1285. [Google Scholar]
- Chang, P.; Chang, Y.; Zhou, J.; Yang, D. Interference analysis of TD-LTE and TD-SCDMA system coexistence. In Proceedings of the 2010 Second International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC), Wuhan, China, 24–25 April 2010; pp. 77–80. [Google Scholar]
- Wang, Q.; Li, X. Analysis of LTE FDD and TD-LTE combination network’s interference. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 2332–2336. [Google Scholar]
- Lan, Y.; Harada, A. Power allocation-Based adjacent channel interference reduction for coexisting TD-LTE and LTE-FDD networks. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; pp. 1–5. [Google Scholar]
- Shi, H.; Han, R.; Liu, H.; Liu, C.; Liu, J. The interference analysis of satellite services in the 8025–8400 MHz frequency band. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 81–84. [Google Scholar]
- Barrie, S.; Konditi, D. Evaluation of adjacent channel interference from land-earth station in Motion to 5G radio access network in the Ka-frequency band. Heliyon 2021, 7, e07412. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Liu, Y.; Feng, Z.; Zhang, Q. Coexistence analysis between 5G system and fixed-satellite service in 3400–3600 MHz. China Commun. 2018, 15, 25–32. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, H.-K.; Nekovee, M.; Jo, H.-S. Coexistence of 5G with satellite services in the millimeter-Wave band. IEEE Access 2020, 8, 163618–163636. [Google Scholar] [CrossRef]
- Lagunas, E.; Tsinos, C.G.; Sharma, S.K.; Chatzinotas, S. 5G cellular and fixed satellite service spectrum coexistence in c-band. IEEE Access 2020, 8, 72078–72094. [Google Scholar] [CrossRef]
- Baruffa, G.; Femminella, M.; Mariani, F.; Reali, G. Protection ratio and antenna separation for DVB—T/LTE coexistence issues. IEEE Commun. Lett. 2013, 17, 1588–1591. [Google Scholar] [CrossRef]
- Basnet, S.; Gunawardana, U.; Biyanwilage, S.; Liyanapathirana, R. Interference analysis in digital TV reception with LTE systems in adjacent bands in Australian context. In Proceedings of the 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC), Southbank, Australia, 26–28 November 2014; pp. 82–86. [Google Scholar]
- Polak, L.; Milos, J.; Kresta, D.; Kratochvil, T.; Marsalek, R. LTE and DVB-T2 networks in the first digital dividend band in Europe: A coexistence study. In Proceedings of the 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA), Prague, Czech Republic, 19–20 April 2018; pp. 1–4. [Google Scholar]
- Harvanek, M.; Marsalek, R.; Kral, J.; Gotthans, T.; Blumenstein, J.; Pospisil, M.; Rupp, M. Adjacent channel interference cancellation in FDM transmissions. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5417–5428. [Google Scholar] [CrossRef]
- Padaki, A.V.; Tandon, R.; Reed, J.H. On adjacent channel co-Existence with receiver nonlinearity. IEEE Trans. Wirel. Commun. 2018, 17, 4922–4936. [Google Scholar] [CrossRef]
- Hisham, A.; Yuan, D.; Ström, E.G.; Brännström, F. Adjacent channel interference aware joint scheduling and power control for V2V broadcast communication. IEEE Trans. Intell. Transp. Syst. 2021, 22, 443–456. [Google Scholar] [CrossRef]
- Deb, S.; Monogioudis, P. Learning-Based uplink interference management in 4G LTE cellular systems. IEEE/ACM Trans. Netw. 2015, 23, 398–411. [Google Scholar] [CrossRef]
- Sun, P.; Ding, J.; Lin, S.; Fei, D.; Wang, W. Research on co-channel interference between LTE-R and GSM-R wireless networks in 900MHz. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1213–1214. [Google Scholar]
- Ma, Z.; Wu, Y.; Xiao, M.; Liu, G.; Zhang, Z. Interference suppression for railway wireless communication systems: A reconfigurable intelligent surface approach. IEEE Trans. Veh. Technol. 2021, 70, 11593–11603. [Google Scholar] [CrossRef]
- Hammi, T.; Ben Slimen, N.; Deniau, V.; Rioult, J.; Dudoyer, S. Comparison between GSM-R coverage level and EM noise level in railway environment. In Proceedings of the 2009 9th International Conference on Intelligent Transport Systems Telecommunications (ITST), Lille, France, 20–22 October 2009; pp. 123–128. [Google Scholar]
- Zhao, T.; Fu, C.; Song, G.; Wang, L.; Mu, X. Anti-electromagnetic interference design for railway vehicles in complex electromagnetic environment. In Proceedings of the 2021 11th International Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 1–5. [Google Scholar]
- Huang, X.; Chen, Y.; Bian, T.; Tang, K.; Gu, J.; Yang, M. Analysis and research on vehicle-ground communication failure of CBTC system. In Proceedings of the 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2019; pp. 437–441. [Google Scholar]
- Yi, C.; Tang, K.; Cao, X.; Zhang, F.; Bian, T.; Yang, M. Analysis of the solution to the interference of subway communication signal. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 2418–2421. [Google Scholar]
- Shu, Z.; Wang, Z.; Zhang, L.; Fan, J.; Lin, Y. Redundant forward gateway in heterogeneous WLAN and LTE-M networks for reliable metro communication. In Proceedings of the 2020 IEEE 18th International Conference on Industrial Informatics (INDIN), Warwick, UK, 20–23 July 2020; pp. 327–332. [Google Scholar]
- Yuan, J.; Li, Z.; Liu, M.; Lv, X.; Wang, Y. A study on the coexistence of TD-LTE/5G and mobile satellite service. In Proceedings of the 2018 24th Asia-Pacific Conference on Communications (APCC), Ningbo, China, 12–14 November 2018; pp. 119–124. [Google Scholar]
- Hassan, W.A.; Jo, H.-S.; Ikki, S.; Nekovee, M. Spectrum-sharing method for co-existence between 5G OFDM-based system and fixed service. IEEE Access 2019, 7, 77460–77475. [Google Scholar] [CrossRef]
- ETSI TR 136 104; LTE. Evolved Universal Terrestrial Radio Access (E-UTRA). Base Station (BS) Radio Transmission and Reception (3GPP TS 36.104 Version 17.5.0 Release 17). ETSI: Sophia Antipolis, France, 2022.
- Makoveyenko, D.; Bykov, R.; Osharovska, O. Interference from ultra wide band devices on mobile service in the frequency range of 3400–3800 MHz. In Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 16–18 April 2019; pp. 563–567. [Google Scholar]
- ETSI TR 136 942; LTE. Evolved Universal Terrestrial Radio Access (E-UTRA). Radio Frequency (RF) System Scenarios (3GPP TR 36.942 Version 17.0.0 Release 17). ETSI: Sophia Antipolis, France, 2022.
- Choi, S.; Kang, K.-M. Analysis of coexistence between unmanned aerial vehicles and wireless devices below 1GHz. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22 October 2021; pp. 1201–1204. [Google Scholar]
- ETSI TS 136 101; LTE. Evolved Universal Terrestrial Radio Access (E-UTRA). User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 Version 17.5.0 Release 17). ETSI: Sophia Antipolis, France, 2022.
- Fan, Y.; Sui, H.; Ma, Q. Design and algorithm study of propagation model in fire network. In Proceedings of the 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications (ISDEA), Zhangjiajie, China, 15–16 June 2014; pp. 321–325. [Google Scholar]
- Wei, J.; Liu, L.; Zhong, X.; Fu, X. Interference evaluation of control channels under the co-existence of LTE-FDD and TD-LTE. In Proceedings of the 2014 International Conference on Information Networking (ICOIN), Phuket, Thailand, 10–12 February 2014; pp. 192–196. [Google Scholar]
- Wu, Y.; Zheng, G.; Wang, T. Performance analysis of MIMO transmission scheme using single leaky coaxial cable. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 298–301. [Google Scholar] [CrossRef]
Interference Band | Frequency | Type of Interfering Link | Mode | Interference Mobility |
---|---|---|---|---|
Lower adjacent frequency | 1765–1785 MHz | Uplink signal | LTE FDD | Movable |
Upper adjacent frequency | 1805–1820 MHz | Downlink signal | LTE FDD | Immovable |
1820–1825 MHz | Downlink signal | GSM FDD | Immovable |
Interference Link | UE-BS | UE-TE | ||||||
---|---|---|---|---|---|---|---|---|
Received BW (MHz) | 5 | 10 | 5 | 10 | ||||
Guard band (MHz) | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 |
(dBm) | 23 | 23 | 23 | 23 | ||||
(dBi) | 15 | 15 | 0 | 0 | ||||
(dBm) | −102 | −99 | −98 | −95 | ||||
(dBm) | −109 | −106 | −98 | −95 | ||||
ACS (dB) | 53.27 | 50.26 | 49.27 | 46.26 | ||||
ACLR (dB) | 21.37 | 35.02 | 21.19 | 35.02 | 21.37 | 35.02 | 21.19 | 35.02 |
ACIR (dB) | 21.37 | 34.96 | 21.19 | 34.89 | 21.36 | 34.86 | 21.18 | 34.71 |
MCL (dB) | 125.63 | 112.04 | 122.81 | 109.11 | 99.64 | 86.14 | 96.82 | 83.29 |
Spectrum Emission Limit (dBm)/Channel Bandwidth | |||||||
---|---|---|---|---|---|---|---|
ΔfOOB (MHz) | 1.4 MHz | 3.0 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz | Measurement Bandwidth |
±0–1 | −10 | −13 | −15 | −18 | −20 | −21 | 30 kHz |
±1–2.5 | −10 | −10 | −10 | −10 | −10 | −10 | 1 MHz |
±2.5–5 | −25 | −10 | −10 | −10 | −10 | −10 | 1 MHz |
±5–6 | −25 | −13 | −13 | −13 | −13 | 1 MHz | |
±6–10 | −25 | −13 | −13 | −13 | 1 MHz | ||
±10–15 | −25 | −13 | −13 | 1 MHz | |||
±15–20 | −25 | −13 | 1 MHz | ||||
±20–25 | −25 | 1 MHz |
Location of UE | Platform | Carriage | ||||||
---|---|---|---|---|---|---|---|---|
Received BW (MHz) | 5 | 10 | 5 | 10 | ||||
Guard band (MHz) | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 |
Minimum safe distance (m) | 25.87 | 5.41 | 18.70 | 3.86 | 10.30 | 2.15 | 7.44 | 1.54 |
Location of UE | Platform | Carriage | ||||||
---|---|---|---|---|---|---|---|---|
Received BW (MHz) | 5 | 10 | 5 | 10 | ||||
Guard band (MHz) | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 |
Minimum safe distance (m) | 1.30 | 0.28 | 0.94 | 0.20 | 0.52 | 0.11 | 0.37 | 0.08 |
Interference Link | UE-BS | |||
---|---|---|---|---|
Received BW (MHz) | 5 | 10 | ||
Guard band (MHz) | 0 | 5 | 0 | 5 |
(dBm) | 23 | |||
(dB/100 m) | 4 | |||
(m) | 0.25 | |||
(dB) | 62 | |||
Feeder loss (dB) | 0.9 | |||
Splitter loss (dB) | 1.4 | |||
Train penetration loss (dB) | 8 | |||
Body penetration loss (dB) | 2 | |||
(dBm) | −109 | −106 | ||
ACIR (dB) | 21.37 | 34.96 | 21.19 | 34.89 |
MCL (dB) | 110.63 | 97.04 | 107.81 | 94.11 |
Minimum safe distance (m) | 0.85 | 0.18 | 0.61 | 0.13 |
LTE BW | Number of RBs per UE | |||
---|---|---|---|---|
5 MHz | 5 | 5 × 180 KHz | 30 + X | 43 + X |
10 MHz | 10 | 10 × 180 KHz | 30 + X | 43 + X |
20 MHz | 20 | 20 × 180 KHz | 30 + X | 43 + X |
Parameter Set | Gamma (γ) | PLx-ile (dB) | |||
---|---|---|---|---|---|
20 MHz BW | 15 MHz BW | 10 MHz BW | 5 MHz BW | ||
Set 1 | 1 | 109 | 110 | 112 | 115 |
Set 2 | 0.8 | N/A | N/A | 129 | 133 |
Parameter | Downlink | Uplink |
---|---|---|
0.6 | 0.4 | |
−10 | −10 | |
4.4 | 2.0 | |
22.05 | 14.91 |
Parameters | LTE FDD | LTE-M | ||
---|---|---|---|---|
Uplink | Downlink | Uplink | Downlink | |
Cell Structure | Macrocell structure, 750 m distance between base stations | Linear topology | ||
Carrier BW | 10 MHz | 10 MHz | ||
RB Size | 180 KHz | 180 KHz | ||
User distribution | Uniformly distribute at random based on area | Nearby random distribution along the track | ||
User/Train Number | 50,100 | 1 | ||
Thermal noise density | −174 dBm/Hz | −174 dBm/Hz | ||
Noise coefficient | 5 dB | 9 dB | 5 dB | 9 dB |
Antenna Height | 6 m | 1.5 m | 5 m | 2.5 m |
Receiving Antenna Gain | 15 dBi | 0 dBi | 15 dBi | 0 dBi |
Transmitting Antenna Gain | 0 dBi | 15 dBi | 0 dBi | 15 dBi |
Maximum/Minimum Transmitting Power | 23 dBm/−30 dBm | 43 dBm | 33 dBm/−30 dBm | 46 dBm |
Interference Link | Offset D | Number of UE/Set | |||||
---|---|---|---|---|---|---|---|
0 | 0.5R | R | 50/Set 1 | 50/Set 2 | 100/Set 1 | 100/Set 2 | |
UE-BS | 38.76 | 49.25 | 55.08 | 50.07 | 54.82 | 56.61 | 59.79 |
UE-TE | 28.94 | 30.35 | 34.36 | 17.15 | 23.26 | 29.12 | 34.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Wang, X.; Zhang, X.; Saleem, A.; Zheng, G. Analysis of LTE-M Adjacent Channel Interference in Rail Transit. Sensors 2022, 22, 3876. https://doi.org/10.3390/s22103876
Fu H, Wang X, Zhang X, Saleem A, Zheng G. Analysis of LTE-M Adjacent Channel Interference in Rail Transit. Sensors. 2022; 22(10):3876. https://doi.org/10.3390/s22103876
Chicago/Turabian StyleFu, Hao, Xiaoyong Wang, Xuefan Zhang, Asad Saleem, and Guoxin Zheng. 2022. "Analysis of LTE-M Adjacent Channel Interference in Rail Transit" Sensors 22, no. 10: 3876. https://doi.org/10.3390/s22103876
APA StyleFu, H., Wang, X., Zhang, X., Saleem, A., & Zheng, G. (2022). Analysis of LTE-M Adjacent Channel Interference in Rail Transit. Sensors, 22(10), 3876. https://doi.org/10.3390/s22103876