X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite
Abstract
:1. Introduction
Highlights
- X-ray diffraction studies combined with tensile tests confirm that SbSI acts as reinforcement.
- A strong shift of sulfur atoms in SbSI unit cell under plastic deformation of epoxy/SbSI nanocomposite.
- Relatively high peak-to-peak current was measured (Ip-p = 1 pA) in elastic deformation.
- The piezoelectric response is independent of the deformation speed rate.
2. Materials and Methods
2.1. Materials Fabrication
2.2. Evaluation Methods
3. Results and Discussion
3.1. Uniaxial Tensile Tests and X-ray Diffraction Studies
3.2. Stress Analysis up to Break Using (411) Peak
3.3. Stress Analysis in the Elastic Region Using (411) and (530) Peak
3.4. Piezoelectric Response of the Composite Sensor
3.5. Scanning Electron Microscopy Studies
4. Conclusions
- Rietveld refinement of XRD patterns obtained at various loads (in the range of 0–700 N) shows that a and b lattice parameters of SbSI unit cell slightly decrease, while the c parameter remains constant. It results in a slight decrease in lattice volume, but also results in a relatively high lattice strain, especially under plastic deformation of composite. Moreover, the strong shift of sulfur atoms was detected under loads higher than 400 N, which is responsible for the anisotropy of the piezoelectric properties of SbSI.
- Major stress that affects SbSI nanowires in the epoxy matrix has shear nature, due to its random orientation in a matrix. Moreover, two other types of stress were detected in SbSI nanowires—the tensile one, which is present during tensile tests, and slight compression, regarding the viscoelastic nature of the epoxy matrix.
- This type of composite piezoelectric strain sensor with randomly oriented SbSI nanowires requires a complex stress state, such as bending. Uniaxial stress, especially in the elastic deformation range, requires external voltage to measure the piezoelectric response due to the high impedance and resistivity (ρ = 2.74 × 1011 Ωm) of the sample.
- Epoxy/SbSI nanocomposites driven with an applied voltage respond to the applied tensile stress by generating a piezoelectric current with a relatively high value (8.16 pA, Ip-p = 1 pA). The current level is independent of the deformation speed rate in contradistinction to complex stress states. Piezoelectric measurements may incline this material as potentially applicable in a piezoelectric strain sensor as well as smart sensing materials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reddy, J.N. On laminated composites plates with integrated sensors and actuators. Eng. Struct. 1999, 21, 568–593. [Google Scholar] [CrossRef]
- Lau, K.T.; Yuan, L.; Zhou, L.M.; Wu, J.; Woo, C.H. Strain monitoring in FRP laminates and concrete beams using FBG sensors. Comp. Struct. 2001, 51, 9–20. [Google Scholar] [CrossRef]
- Lee, J.; Choi, W.; Yoo, Y.K.; Hwang, K.S.; Lee, S.M.; Kang, S.; Kim, J.; Lee, J.H. A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor. Sensors 2014, 14, 22199–22207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, J.; Zubia, J.; Aranguren, G.; Arrue, J.; Poisel, H.; Saez, I. Comparing polymer optical fiber, fiber Bragg grating, and traditional strain gauge for aircraft structural health monitoring. Appl. Opt. 2009, 48, 1436–1443. [Google Scholar] [CrossRef]
- Durana, G.; Kirchhof, M.; Luber, M.; Saez de Ocariz, I.; Poisel, H.; Zubia, J.; Vazquez, C. Use of a novel fiber optical strain sensor for monitoring the vertical deflection of an aircraft flap. IEEE Sens. J. 2009, 10, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Starr, M.B.; Wang, X. Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials. Sci. Rep. UK 2013, 3, 2160. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, M.; Toroń, B.; Szperlich, P.; Jesionek, M. Fabrication of a piezoelectric strain sensor based on SbSI nanowires as a structural element of a FRP laminate. Compos. Part B Eng. 2019, 157, 58–65. [Google Scholar] [CrossRef]
- Kozioł, M.; Szperlich, P.; Toroń, B.; Olesik, P.; Jesionek, M. Assessment of the Piezoelectric Response of an Epoxy Resin/SbSI Nanowires Composite Filling FDM Printed Grid. Materials 2020, 22, 5281. [Google Scholar] [CrossRef]
- Toroń, B.; Szperlich, P.; Kozioł, M. SbSI Composites Based on Epoxy Resin and Cellulose for Energy Harvesting and Sensors—The Influence of SbSI Nanowires Conglomeration on Piezoelectric Properties. Materials 2020, 13, 902. [Google Scholar] [CrossRef] [Green Version]
- Fatuzzo, E.; Harbeke, G.; Merz, W.J.; Nitsche, R.; Roetschi, H.; Ruppet, N. Ferroelectricity in SbSI. Phys. Rev. 1962, 127, 2036–2037. [Google Scholar] [CrossRef]
- Nitsche, R.; Roetschi, H.; Wild, P. New ferroelectric V, VI, VII compounds of the SbSI type. Appl. Phys. Lett. 1964, 4, 210. [Google Scholar] [CrossRef]
- Berlincourt, D.; Jaffe, H.; Merz, W.J.; Nitsche, R. Piezoelectric effect in the ferroelectric range in SbSI. Appl. Phys. Lett. 1964, 4, 61. [Google Scholar] [CrossRef]
- Hamano, K.; Nakamura, T.; Ishibashi, Y.; Ooyane, T. Piezoelectric Property of SbSl Single Crystal. J. Phys. Soc. Jpn. 1965, 20, 1886–1888. [Google Scholar] [CrossRef]
- Tatsuzaki, I.; Itoh, K.; Ueda, S.; Shindo, Y. Strain along C axis of SbSI caused by illumination in DC electric field. Phys. Rev. Lett. 1966, 17, 198–200. [Google Scholar] [CrossRef]
- Kikuchi, A.; Oka, Y.; Sawaguchi, E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jpn. 1967, 23, 337–354. [Google Scholar] [CrossRef]
- Balkanski, M.; Teng, M.K.; Shapiro, S.M.; Ziolkiewicz, M.K. Lattice modes and phase transition in SbSI. Phys. Status Solidi 1971, 44, 355–368. [Google Scholar] [CrossRef]
- Yoshida, M.; Yamanaka, K.; Hamakawa, Y. Semiconducting and Dielectric Properties of C-Axis Oriented SbSI Thin Film. Jpn. J. Appl. Phys. 1973, 12, 1699. [Google Scholar] [CrossRef]
- Samara, G.A. Effects of pressure on the dielectric properties of and the vanishing of the ferroelectricity in SbSI. Ferroelectrics 1975, 9, 209–219. [Google Scholar] [CrossRef]
- Furman, E.; Brafman, O.; Makovsky, J. Approximation to long-wavelength lattice dynamics of SbSI-type crystals. Phys. Rev. B 1976, 13, 1703–1710. [Google Scholar] [CrossRef]
- Itoh, K.; Matsunaga, H.; Nakamura, E. Refinement of Crystal Structure of SbSI in the Ferroelectric Phase. J. Phys. Soc. Jpn. 1976, 41, 1679–1680. [Google Scholar] [CrossRef]
- Wang, C.; Tang, K.; Yang, Q.; Hai, B.; Shen, G.; An, C.; Yu, W.; Qian, Y. Synthesis of novel SbSI nanorods by a hydrothermal method. Inorg. Chem. Commun. 2001, 7, 339–341. [Google Scholar] [CrossRef]
- Gomonnai, A.V.; Voynarovych, I.M.; Solomon, A.M.; Azhniuk, Y.M.; Kikineshi, A.A.; Pinzenik, V.P.; Kis-Varga, M.; Daroczy, L.; Lopushansky, V.V. X-ray diffraction and Raman scattering in SbSI nanocrystals. Mater. Res. Bull. 2003, 38, 1767–1772. [Google Scholar] [CrossRef]
- Nowak, M.; Szperlich, P.; Bober, Ł.; Szala, J.; Moskal, G.; Stróż, D. Sonochemical preparation of SbSI gel. Ultrason. Sonochem. 2008, 15, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Audzijonis, A.; Sereika, R.; Žaltauskas, R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun. 2008, 147, 88–89. [Google Scholar] [CrossRef]
- Łukaszewicz, K.; Pietraszko, A.; Kucharska, M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics 2008, 375, 170–177. [Google Scholar] [CrossRef]
- Nowak, M.; Mroczek, P.; Duka, P.; Kidawa, A.; Szperlich, P.; Grabowski, A.; Szala, J.; Moskal, G. Using of textured polycrystalline SbSI in actuators. Sens. Actuators A Phys. 2009, 150, 251–256. [Google Scholar] [CrossRef]
- Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009, 80, 046107. [Google Scholar] [CrossRef]
- Cho, I.; Min, B.K.; Joo, S.W.; Sohn, Y. One-dimensional single crystalline antimony sulfur iodide, SbSI. Mater. Lett. 2012, 86, 132–135. [Google Scholar] [CrossRef]
- Nowak, M.; Mistewicz, K.; Nowrot, A.; Szperlich, P.; Jesionek, M.; Starczewska, A. Transient characteristics and negative photoconductivity of SbSI humidity sensor. Sens. Actuators A Phys. 2014, 210, 32–40. [Google Scholar] [CrossRef]
- Tamilselvan, M.; Bhattacharyya, A.J. Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 2016, 107, 105980–105987. [Google Scholar] [CrossRef]
- Tasviri, M.; Sajadi-Hezave, Z. SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 2017, 436, 174–181. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Chen, Z.; Guo, Y.; Wang, D.; Wertz, E.A.; Shi, J. Effect of strain on the Curie temperature and band structure of low-dimensional SbSI. Appl. Phys. Lett. 2018, 112, 183104. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D.; Guiseppi-Elie, A. Ferroelectric SbSI nanowires for ammonia detection at a low temperature. Talanta 2018, 189, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Hatada, H.; Kaneko, Y.; Ogawa, N.; Tokura, Y.; Kawasaki, M. Impact of electrodes on the extraction of shift current from a ferroelectric semiconductor SbSI. Appl. Phys. Lett 2018, 113, 232901. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D. A Ferroelectric-Photovoltaic Effect in SbSI Nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Szperlich, P.; Toroń, B. An Ultrasonic Fabrication Method for Epoxy Resin/SbSI Nanowire Composites, and their Application in Nanosensors and Nanogenerators. Polymers 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Jesionek, M.; Toroń, B.; Szperlich, P.; Biniaś, W.; Biniaś, D.; Rabej, S.; Starczewska, A.; Nowak, M.; Kępińska, M.; Dec, J. Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile. Polymer 2019, 180, 121729. [Google Scholar] [CrossRef]
- Mistewicz, K.; Kępińska, M.; Nowak, M.; Sasiela, A.; Zubko, M.; Stróż, D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials 2020, 13, 4803. [Google Scholar] [CrossRef]
- Mistewicz, K.; Matysiak, W.; Jesionek, M.; Jarka, P.; Kępińska, M.; Nowak, M.; Tański, T.; Stróż, D.; Szade, J.; Balin, K.; et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 2020, 517, 146138. [Google Scholar] [CrossRef]
- Fridkin, V.M. Photoferroelectrics; Springer: New York, NY, USA, 1979. [Google Scholar]
- Fridkin, V.M. Ferroelectric Semiconductors; Consultants Bureau: New York, NY, USA, 1980. [Google Scholar]
- Nitsche, R.; Merz, W.J. Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 1960, 13, 154–155. [Google Scholar] [CrossRef]
- Grekov, A.A.; Danilova, S.P.; Zaks, P.L.; Kulieva, V.V.; Rubanov, L.A.; Syrkin, L.N.; Chekhunova, N.P.; El’gard, A.M. Piezoelectric elements made from antimony sulphoiodide crystals. Akust. Zurnal 1973, 19, 662–663. [Google Scholar]
- Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.L.; Mistewicz, K.; Kim, H.J. Piezoelectric Nanogenerator Based on Lead-Free Flexible PVDF-Barium Titanate Composite Films for Driving Low Power Electronics. Crystals 2021, 11, 85. [Google Scholar] [CrossRef]
- Gao, J.; Xue, D.; Liu, W.; Zhou, C.; Ren, X. Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Hyeon, D.Y.; Jung, M.; Park, K.; Park, J. Piezoelectric BaTiO3 microclusters and embossed ZnSnO3 microspheres-based monolayer for highly-efficient and flexible composite generator. Compos. Part B Eng. 2020, 203, 108476. [Google Scholar] [CrossRef]
- Suchanicz, J.; Czaja, P.; Kluczewska, K.; Czernastek, H.; Sokolowski, M.; Węgrzyn, A. The Influence of Pb(Mg1/3Nb2/3)O3-doping on the thermoelectric properties of BaTiO3 ceramics. Phase Transit. 2018, 91, 1036–1043. [Google Scholar] [CrossRef]
- Habib, M.; Lee, M.H.; Kim, D.J.; Choi, H.I.; Kim, M.H.; Kim, W.J.; Song, T.K. Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3–BaTiO3 ceramics. Ceram. Int. 2020, 46, 22239–22252. [Google Scholar] [CrossRef]
- Pakalniškis, A.; Łukowiak, A.; Niaura, G.; Głuchowski, P.; Karpinsky, D.V.; Alikin, D.O.; Abramov, A.S.; Zhaludkevich, A.; Silibin, M.; Kholkin, A.L.; et al. Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate-bismuth ferrite (BaTiO3– BiFeO3) solid solutions. J. Alloys Compd. 2020, 830, 154632. [Google Scholar] [CrossRef]
- Karoblis, D.; Griesiute, D.; Mazeika, K.; Baltrunas, D.; Karpinsky, D.V.; Lukowiak, A.; Głuchowski, P.; Raudonis, R.; Katelnikovas, A.; Zarkov, A.; et al. A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials 2020, 13, 3035. [Google Scholar] [CrossRef]
- Pakalniškis, A.; Skaudžius, R.; Zhaludkevich, D.V.; Zhaludkevich, A.L.; Alikin, D.O.; Abramov, A.S.; Murauskas, T.; Shur, V.Y.; Dronov, A.A.; Silibin, M.V.; et al. Morphotropic phase boundary in Sm-substituted BiFeO3 ceramics: Local vs microscopic approaches. J. Alloys Compd. 2021, 875, 159994. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Pakalniškis, A.; Niaura, G.; Zhaludkevich, D.V.; Zhaludkevich, A.L.; Latushka, S.I.; Silibin, M.; Serdechnova, M.; Garamus, V.M.; Lukowiak, A.; et al. Evolution of the crystal structure and magnetic properties of Sm-doped BiFeO3 ceramics across the phase boundary region. Ceram. Int. 2021, 47, 5399–5406. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Willinger, M.; Khomchenko, V.A.; Kholkin, A.L.; Sikolenko, V.; Maniecki, T.; Maniukiewicz, W.; Dubkov, S.V.; et al. Structure and piezoelectric properties of Sm-doped BiFeO3 ceramics near the morphotropic phase boundary. Mater. Res. Bull. 2019, 112, 420–425. [Google Scholar] [CrossRef]
- Kanno, I.; Mino, T.; Kuwajima, S.; Suzuki, T.; Kotera, H.; Wasa, K. Piezoelectric properties of (K,Na)NbO3 thin films deposited on (001)SrRuO3/Pt/MgO substrates. IEEE Trans. Ultrason. Ferr. 2007, 54, 2556–2562. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Meng, X.; Hu, C.; Tan, P.; Cao, X.; Shi, G.; Zhou, Z.; Zhang, R. Origin of giant piezoelectric effect in lead-free K1−xNaxTa1−yNbyO3 single crystals. Sci. Rep. UK 2016, 6, 25637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Liu, Z.; Xie, B.; Lu, J.; Guo, K.; Ke, S.; Shu, L.; Fan, H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B Environ. 2020, 279, 119353. [Google Scholar] [CrossRef]
- Mariello, M.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Qualtieri, A.; Pisanello, F.; De Vittorio, M. Microstructure and Electrical Properties of Novel piezo-optrodes Based on Thin-Film Piezoelectric Aluminium Nitride for Sensing. IEEE Trans. Nanotechnol. 2021, 20, 10–19. [Google Scholar] [CrossRef]
- Płońska, M.; Surowiak, Z. Piezoelectric properties of x/65/35 PLZT ceramics depended of the lanthanum (x) ions contents. J. Phys. IV 2006, 137, 141–144. [Google Scholar] [CrossRef]
- Bavbande, D.V.; Kumar, R.; Bafna, V.H.; Mohan, D.; Kothiyal, G.P. Synthesis and piezoelectric properties of PLZT ceramics. AIP Conf. Proc. 2012, 1447, 1341. [Google Scholar] [CrossRef]
- Laxmi Priya, S.; Kumar, V.; Termoto, T.; Kanno, I. Transverse piezoelectric properties of {110}-oriented PLZT thin films. Integr. Ferroelectr. 2018, 192, 113–120. [Google Scholar] [CrossRef]
- Harikrishnan, K.; Bavbande, D.V.; Mohan, D.; Manoharan, B.; Prasad, M.R.S.; Kalyanakrishnan, G. PZT/PLZT—Elastomer composites with improved piezoelectric voltage coefficient. In Proceedings of the International Conference on Advances in Metallurgy, Materials and Manufacturing, Salem, Tamilnadu, India, 6–8 March 2017; IOP Conference Series: Materials Science and Engineering. Volume 314. [Google Scholar] [CrossRef]
- Mirkhalaf, S.M.; Eggels, E.H.; van Beurden, T.J.H.; Larsson, F.; Fagerström, M. A finite element based orientation averaging method for predicting elastic properties of short fiber reinforced composites. Compos. Part B Eng. 2020, 202, 108388. [Google Scholar] [CrossRef]
- Mentges, N.; Dashtbozorg, B.; Mirkhalaf, S.M. A micromechanics-based artificial neural networks model for elastic properties of short fiber composites. Compos. Part B Eng. 2021, 213, 108736. [Google Scholar] [CrossRef]
- Cai, H.; Ye, J.; Wang, Y.; Saafi, M.; Huang, B.; Yang, D.; Ye, J. An effective microscale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers. Compos. Struct. 2020, 240, 112087. [Google Scholar] [CrossRef]
- Lionetto, F.; Montagna, F.; Natali, D.; De Pascalis, F.; Nacucchi, M.; Caretto, F.; Maffezzoli, A. Correlation between elastic properties and morphology in short fiber composites by X-ray computed micro-tomography. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106169. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, P.; Pei, Q.; Sorkin, V.; Commillus, A.L.; Su, Z.; Guo, T.; Thitsartarn, W.; Lin, T.; He, C.; et al. Elastic properties of injection molded short glass fiber reinforced thermoplastic composites. Compos. Struct. 2020, 254, 112850. [Google Scholar] [CrossRef]
- Capela, C.; Oliveira, S.E.; Ferreira, J.A.M. Fatigue behavior of short carbon fiber reinforced epoxy composites. Compos. Part B Eng. 2019, 164, 191–197. [Google Scholar] [CrossRef]
- Zhao, J.; Su, D.X.; Yi, J.; Cheng, G.; Turng, L.S.; Osswald, T. The effect of micromechanics models on mechanical property predictions for short fiber composites. Compos. Struct. 2020, 244, 112229. [Google Scholar] [CrossRef]
- Huang, H.B.; Huang, Z.M. Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105889. [Google Scholar] [CrossRef]
- Mehdipour, H.; Camanho, P.P.; Belingardi, G. Elasto-plastic constitutive equations for short fiber reinforced polymers. Compos. Part B Eng. 2019, 165, 199–214. [Google Scholar] [CrossRef]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Karolus, M.; Łągiewka, E. Crystallite size and lattice strain in nanocrystalline Ni-Mo alloys studied by Rietveld refinement. J. Alloy. Compd. 2004, 367, 235–238. [Google Scholar] [CrossRef]
- Karolus, M.; Maszybrocka, J.; Stwora, A.; Skrabalak, G. Residual stresses of AlSi10Mg fabricated by selective laser melting (SLM). Arch. Metall. Mater. 2019, 64, 1011–1016. [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials; Taylor and Francis: New York, NY, USA, 1999. [Google Scholar]
- Shaw, M.T.; MacKnight, W.J. Introduction to Polymer Viscoelasticity, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Klasztorny, M.; Nycz, D.B.; Bogusz, P. Rheological effects in in-plane shear test and in-plane shear reep test on glass-vinyl-ester lamina. Compos. Theory Pract. 2016, 20, 35–42. [Google Scholar]
- Oka, Y.; Kikuchi, A.; Mori, T.; Sawaguchi, E. Atomic parameters in ferroelectric SbSI. J. Phys. Soc. Jpn 1966, 21, 405–406. [Google Scholar] [CrossRef]
- Iwata, Y.; Fukui, S.; Koyano, N.; Shibuya, I. Refined Crystal Structure and Type of Phase Transition in Ferroelectric SbSI. J. Phys. Soc. Jpn 1966, 21, 1846–1847. [Google Scholar] [CrossRef]
- Park, S.A.; Kim, M.Y.; Lim, J.Y.; Park, B.S.; Koh, J.D.; Kim, W.T. Optical Properties of Undoped and V-Doped VA-VIA-VIIA Single Crystals. Phys. Status Solidi B 1995, 187, 253–260. [Google Scholar] [CrossRef]
- Batarunas, J.; Audzijonis, A.; Mykolaitiene, N.; Zickus, K. The electronic potential of paraelectric SbSI. Phys. Status Solidi B 1988, 150, 31–34. [Google Scholar] [CrossRef]
- Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Kim, S.J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 2018, 50, 256–265. [Google Scholar] [CrossRef]
- Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Vivekanathan, V.; Kim, S.J. Regulation of Charge Carrier Dynamics in ZnO Microarchitecture-Based UV/Visible Photodetector via Photonic-Strain Induced Effects. Small 2018, 14, 1703044. [Google Scholar] [CrossRef]
- Wang, Z.L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Wang, Z.L. Fundamental Theory of Piezotronics. Adv. Mater. 2011, 23, 3004–3013. [Google Scholar] [CrossRef]
- Thonapalin, P.; Aimmanee, S.; Laoratanakul, P.; Das, R. Thermomechanical Effects on Electrical Energy Harvested from Laminated Piezoelectric Devices. Crystals 2021, 11, 141. [Google Scholar] [CrossRef]
- Abinnas, N.; Baskaran, P.; Harish, S.; Sankar Ganesh, R.; Navaneethan, M.; Nisha, K.D.; Ponnusamy, S.; Muthamizhchelvan, C.; Ikeda, H.; Hayakawa, Y. 0.8V nanogenerator for mechanical energy harvesting using bismuth titanate–PDMS nanocomposite. Appl. Surf. Sci. 2017, 418, 362–368. [Google Scholar] [CrossRef]
- Liu, L.; Lu, K.; Wang, T.; Liao, F.; Peng, M.; Shao, M. Flexible piezoelectric nanogenerators based on silicon nanowire/α-quartz composites for mechanical energy harvesting. Mater. Lett. 2015, 160, 222–226. [Google Scholar] [CrossRef]
- Kim, I.; Roh, H.; Yu, J.; Jayababu, N.; Kim, D. Boron Nitride Nanotube-Based Contact Electrification-Assisted Piezoelectric Nanogenerator as a Kinematic Sensor for Detecting the Flexion–Extension Motion of a Robot Finger. ACS Energy Lett. 2020, 5, 1577–1585. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Qin, Z.; Han, Q.; Wang, T.; Chu, F. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 2022, 238, 121770. [Google Scholar] [CrossRef]
- Nan, C.-W.; Jia, Q. Obtaining ultimate functionalities in nanocomposites: Design, control, and fabrication. MRS Bull. 2015, 40, 719–724. [Google Scholar] [CrossRef] [Green Version]
Step | Linear Stress, MPa | Shear Stress, MPa |
---|---|---|
Initial | −0.4 (2) * | 11 (2) |
100 N | 18 (3) | 12 (2) |
200 N | 39 (21) | 14 (2) |
300 N | 66 (17) | 19 (1) |
400 N | 100 (20) | 22 (3) |
500 N | 110 (33) | 27 (2) |
600 N | 120 (37) | 29 (3) |
Step | (411) Peak | (530) Peak | ||
---|---|---|---|---|
Linear Stress, MPa | Shear Stress, MPa | Linear Stress, MPa | Shear Stress, MPa | |
Initial | −0.4 (2) * | 11 (2) | 0.3 (4) * | 8 (4) |
30 N | 6 (4) | 12 (3) | 4 (3) | 13 (3) |
60 N | 12 (3) | 15 (2) | 21 (4) | 13 (3) |
90 N | 12 (3) | 16 (2) | 22 (3) | 16 (5) |
120 N | 20 (6) | 18 (3) | 24 (5) | 19 (5) |
150 N | 27 (5) | 19 (3) | 27 (2) | 26 (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godzierz, M.; Toroń, B.; Szperlich, P.; Olesik, P.; Kozioł, M. X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite. Sensors 2022, 22, 3886. https://doi.org/10.3390/s22103886
Godzierz M, Toroń B, Szperlich P, Olesik P, Kozioł M. X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite. Sensors. 2022; 22(10):3886. https://doi.org/10.3390/s22103886
Chicago/Turabian StyleGodzierz, Marcin, Bartłomiej Toroń, Piotr Szperlich, Piotr Olesik, and Mateusz Kozioł. 2022. "X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite" Sensors 22, no. 10: 3886. https://doi.org/10.3390/s22103886
APA StyleGodzierz, M., Toroń, B., Szperlich, P., Olesik, P., & Kozioł, M. (2022). X-ray Diffraction and Piezoelectric Studies during Tensile Stress on Epoxy/SbSI Nanocomposite. Sensors, 22(10), 3886. https://doi.org/10.3390/s22103886