Real-Time Monitoring Method for Radioactive Substances Using Monolithic Active Pixel Sensors (MAPS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensors
2.2. Experimental Setup
3. Results and Discussion
4. Application and Method
4.1. Detection System Setup
4.2. Detection Method
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Zou, S.; Huang, Y.; Song, L. Availability Evaluation and Improvement Plan of Image Sensor in Accident of Nuclear Power Plant. Nucl. Electron. Detect. Technol. 2016, 36, 651–655. [Google Scholar]
- Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A.C.; Esposito, A.; et al. Active Pixel as Dosimetric Device for Interventional Radiology. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2013, 720, 26–30. [Google Scholar] [CrossRef]
- Magalotti, D.; Placidi, P.; Paolucci, M.; Scorzoni, A.; Servoli, L. Experimental Characterization of a Wireless Personal Sensor Node for the Dosimetry During Interventional Radiology Procedures. IEEE Trans. Instrum. Meas. 2016, 65, 1070–1078. [Google Scholar] [CrossRef]
- Magalotti, D.; Placidi, P.; Dionigi, M.; Scorzoni, A.; Servoli, L. Experimental Characterization of a Personal Wireless Sensor Network for the Medical X-ray Dosimetry. IEEE Trans. Instrum. Meas. 2016, 65, 2002–2011. [Google Scholar] [CrossRef]
- Fu, M. Study on Key Parameters of CMOS MAPS for Charged Particle Detection. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2012. [Google Scholar]
- Pang, L.Y. Can Smartphones Measure Radiation Exposures? J. Sci. Educ. Technol. 2015, 8, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Servoli, L.; Alunni Solestizi, L.; Biasini, M.; Bissi, L.; Calandra, A.; Chiatti, L.; Cicioni, R.; Di Lorenzo, R.; Dipilato, A.C.; Fabiani, S.; et al. Real-time Wireless Personal Dosimeter for Interventional Radiology Procedures. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2019, 936, 65–66. [Google Scholar] [CrossRef]
- Magalotti, D.; Placidi, P.; Fabiani, S.; Bissi, L.; Paolucci, M.; Scorzoni, A.; Calandra, A.; Verzellesi, G.; Servoli, L. A Wireless Personal Sensor Node for Real Time Dosimetry of Interventional Radiology Operators. In Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society, Rome, Italy, 20–21 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.-L.; Song, G.-X.; Guo, D.-F.; Ma, C.-W.; Wang, F. Remote Measurement of Low-Energy Radiation Based on ARM Board and ZigBee Wireless Communication. Nucl. Sci. Tech. 2018, 29, 4. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, F.; Zou, Y.; Sun, M.; Zou, S.; Han, Y.; Huang, Y.; Yu, X.; Gong, D.; Qu, Y.; et al. Low Dose Rate γ-ray Detection Using a MAPS Camera Under a Neutron Radiation Environment. Opt. Express 2021, 29, 34913–34925. [Google Scholar] [CrossRef] [PubMed]
- Arbor, N.; Higueret, S.; Elazhar, H.; Combe, R.; Meyer, P.; Dehaynin, N.; Taupin, F.; Husson, D. Real-Time Detection of Fast and Thermal Neutrons in Radiotherapy with CMOS Sensors. Phys. Med. Biol. 2017, 62, 1920. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, Z.; He, B.; Yao, Z.; Liu, M.; Ma, W.; Sheng, J.; Dong, G.; Jin, J. Theoretical and Experimental Study of the Dark Signal in CMOS Image Sensors Affected by Neutron Radiation from a Nuclear Reactor. AIP Adv. 2017, 7, 125222. [Google Scholar] [CrossRef] [Green Version]
- Pérez, M.; Lipovetzky, J.; Haro, M.S.; Sidelnik, I.; Blostein, J.J.; Bessia, F.A.; Berisso, M.G. Particle Detection and Classification Using Commercial off the Shelf CMOS Image Sensors. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 827, 171–180. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Ma, C.; Zhou, J.; Zhang, R.; Liu, Y. Direct Application of CMOS in Radiation Distribution and Exposure Rate Detection. Nucl. Electron. Detect. Technol. 2013, 33, 1278–1281. [Google Scholar]
- Wang, F.; Wang, M.-Y.; Liu, Y.-F.; Ma, C.-W.; Chang, L. Obtaining Low Energy γ Dose with CMOS Sensors. Nucl. Sci. Tech. 2014, 25, 060401. [Google Scholar] [CrossRef]
- Pérez, M.; Haro, M.S.; Sidelnik, I.; Tozzi, L.; Brito, D.R.; Mora, C.; Blostein, J.J.; Berisso, M.G.; Lipovetzky, J. Commercial CMOS Pixel Array for Beta and Gamma Radiation Particle Counting. In Proceedings of the Argentine School of Micro-Nanoelectronics, Villa Maria, Argentina, 30–31 July 2015; pp. 11–16. [Google Scholar] [CrossRef]
- Wei, Q.-Y.; Wang, Z.-P.; Dai, T.-T.; Gu, Y. Nuclear Radiation Detection Based on Un-covered CMOS Camera under Static Scene. At. Energy Sci. Technol. 2017, 51, 175–179. [Google Scholar] [CrossRef]
- Spang, F.J.; Rosenberg, I.; Hedin, E.; Royel, G. Photon Small-Field Measurements with a CMOS Active Pixel Sensor. Phys. Med. Biol. 2015, 60, 4383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ma, W.; Huang, S.; Yao, Z.; Liu, M.; He, B.; Liu, J.; Sheng, J.; Xue, Y. Characterization of Total Ionizing Dose Damage in COTS Pinned Photodiode CMOS Image Sensors. AIP Adv. 2016, 6, 77108. [Google Scholar] [CrossRef] [Green Version]
- IMX222LQJ Datasheet, SONY. Available online: https://html.alldatasheetcn.com/html-pdf/1132800/SONY/IMX222LQJ/233/2/IMX222LQJ.html (accessed on 10 February 2022).
- A5s30A Datasheet, Ambarella. Available online: https://wenku.baidu.com/view/63d1f66a52ea551811a68731.html (accessed on 18 October 2011).
No. | Isotropic Source | Gamma Photon Source | |
---|---|---|---|
Nuclide | Dose Rate | ||
1 | Am-Be | - | - |
2 | 252Cf | - | - |
3 | Am-Be | 60Co | 6.13 mGy/h |
4 | Am-Be | 60Co | 1.76 mGy/h |
5 | 252Cf | 137Cs | 1.04 mGy/h |
6 | 252Cf | 137Cs | 39.62 mGy/h |
Region No. | Isotropic Source | Gamma Photon Source | |
---|---|---|---|
Nuclide | Dose Rate | ||
A | 252Cf | - | - |
B | 252Cf | 60Co | 6.13 mGy/h |
C | 252Cf | 60Co | 3.31 mGy/h |
D | 252Cf | 60Co | 1.032 mGy/h |
E | Am-Be | 60Co | - |
F | Am-Be | 60Co | 6.13 mGy/h |
G | Am-Be | 60Co | 3.31 mGy/h |
H | Am-Be | 60Co | 1.032 mGy/h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Xu, S.; Huang, Y. Real-Time Monitoring Method for Radioactive Substances Using Monolithic Active Pixel Sensors (MAPS). Sensors 2022, 22, 3919. https://doi.org/10.3390/s22103919
Han Y, Xu S, Huang Y. Real-Time Monitoring Method for Radioactive Substances Using Monolithic Active Pixel Sensors (MAPS). Sensors. 2022; 22(10):3919. https://doi.org/10.3390/s22103919
Chicago/Turabian StyleHan, Yongchao, Shoulong Xu, and Youjun Huang. 2022. "Real-Time Monitoring Method for Radioactive Substances Using Monolithic Active Pixel Sensors (MAPS)" Sensors 22, no. 10: 3919. https://doi.org/10.3390/s22103919
APA StyleHan, Y., Xu, S., & Huang, Y. (2022). Real-Time Monitoring Method for Radioactive Substances Using Monolithic Active Pixel Sensors (MAPS). Sensors, 22(10), 3919. https://doi.org/10.3390/s22103919