Newly Designed and Experimental Test of the Sediment Trap for Horizontal Transport Flux
Abstract
:1. Introduction
2. Design of the 3D Trap
2.1. Structural Design
2.2. Sensors
2.3. Analytic Formula for Sediment Transport Fluxes
2.4. Research Methodology
3. Experimental Evaluation
3.1. Experimental Layout
3.2. Calibration of Turbidity in Relation to Suspended Sand Concentration
3.3. Internal and External Flow-Rate Comparison Test
3.4. Experimental Test of the Calibrated Sediment Transport Flux Formula
3.5. Discussion
4. Conclusions
- (1)
- This study proposes a sediment capture and transport process time-series vector observation device that can be used to conduct in situ long-term monitoring and process reduction of lateral sediment transport flux under normal and even extreme sea conditions. It can also capture sediment samples, providing a more effective technical means for frontier scientific research into seafloor sediment dynamics and material cycling processes.
- (2)
- A set of analytic formulas for sediment transport fluxes based on flow velocity and suspended sand concentration is established for the time-series vector observation device. The non-negligible difference between external flow velocity and internal flow velocity caused by the structure of the device is determined and the conversion equation is proposed.
- (3)
- The reliability of the analytical method for transport fluxes is verified, and the analytic formula is refined through indoor experiments. The results verify the effectiveness of the capture mechanism, which lays the foundation for the application of the time-series vector observation device for sediment capture and transport processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, W.W. Detrital sediment fluxes from continents to oceans. Chem. Geol. 1998, 145, 287–323. [Google Scholar] [CrossRef]
- Liu, J.P.; Milliman, J.D.; Gao, S.; Cheng, P. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine geology. Mar. Geol. 2004, 209, 45–67. [Google Scholar] [CrossRef]
- Cattaneo, A.; Correggiari, A.; Langone, L.; Trincardi, F. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Mar. Geol. 2003, 193, 61–91. [Google Scholar] [CrossRef]
- Green, M.O.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Nittrouer, C.A.; Wright, L. Transport of particles across continental helves. Rev. Geophys. 1994, 32, 85–113. [Google Scholar] [CrossRef]
- Shanmugam, G. The seismite problem. J. Palaeogeogr. 2016, 5, 318–362. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Cao, Q.; Li, A.; Qin, Y. Source to sink: Sedimentation in the continental margins. Adv. Earth Sci. 2003, 18, 713. [Google Scholar]
- Guo-Hui, X.U.; Zeng, Y.; Liu, Z.Q.; Zhou, H.G.; Ren, Y. The Origin of Storm Sediment Flows in Coast. Period. Ocean Univ. China 2019, 49 (Suppl. S1), 59–65. [Google Scholar]
- Chien, N.; Wan, Z. Mechanics of Sediment Transport; American Society of Civil Engineers: Reston, VA, USA, 1999; p. 268. [Google Scholar]
- Ackers, P.; White, W. Sediment transport: New approach and analysis. J. Hydraul. Div. 1973, 99, 2041–2060. [Google Scholar] [CrossRef]
- Bradbury, H.J.; Turchyn, A.V. Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments. Earth Planet. Sci. Lett. 2019, 519, 40–49. [Google Scholar] [CrossRef]
- Zhao, M.X.; Ding, Y.; Meng, Y. Sources of Sedimentary Organic Matter in China Marginal Sea Surface Sediments and Implications of Carbon Sink. Period Ocean. Univ. China 2017, 47, 70–76. [Google Scholar]
- Galy, V.; France-Lanord, C.; Beyssac, O.; Faure, P.; Kudrass, H.; Palhol, F. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 2007, 450, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Sylvain, O. Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods. Water 2018, 10, 390. [Google Scholar]
- Prior, D.; Suhayda, J.; Lu, N.-Z.; Bornhold, B.; Keller, G.; Wiseman, W.; Wright, L.; Yang, Z. Storm wave reactivation of a submarine landslide. Nature 1989, 341, 47–50. [Google Scholar] [CrossRef]
- Grant, W.D.; Williams III, A.J.; Glenn, S.M. Bottom stress estimates and their prediction on the northern California continental shelf during CODE-1: The importance of wave-current interaction. J. Phys. Oceanogr. 1984, 14, 506–527. [Google Scholar] [CrossRef]
- Butman, C. Sediment trap biases in turbulent flows: Results from a laboratory flume study. J. Mar. Res. 1986, 44, 645–693. [Google Scholar] [CrossRef]
- Barnes, M.P.; O’donoghue, T.; Alsina, J.; Baldock, T. Direct bed shear stress measurements in bore-driven swash. Coast. Eng. 2009, 56, 853–867. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.-S.; Su, Z.-Q.; Lalit, B.; Qin, Y. A hybrid FBG-based load and vibration transducer with a 3D fused deposition modelling approach. Meas. Sci. Technol. 2022, 33, 065106. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Rillo Migliorini Giovannini, M.; Errico, A.; Mirzaei, S.; Padulano, R.; Chirico, G.B.; Preti, F. Hydraulic Efficiency of Green-Blue Flood Control Scenarios for Vegetated Rivers: 1D and 2D Unsteady Simulations. Water 2021, 13, 2620. [Google Scholar] [CrossRef]
- Peterson, K.; Sagan, V.; Sidike, P.; Cox, A.; Martinez, M. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote Sens. 2018, 10, 1503. [Google Scholar] [CrossRef] [Green Version]
- Ezzaouini, M.A.; Mahé, G.; Kacimi, I.; Bilali, A.E.; Nafii, A. Predicting Daily Suspended Sediment Load Using Machine Learning and NARX Hydro-Climatic Inputs in Semi-Arid Environment. Water 2022, 14, 862. [Google Scholar] [CrossRef]
- Ts, A.; Gfclb, C.; Ps, D.; Ab, E.; Ok, F. Wave height predictions in complex sea flows through soft-computing models: Case study of Persian Gulf. Ocean. Eng. 2022, 245, 110467. [Google Scholar]
- He, J.; Barton, I. Hyperspectral remote sensing for detecting geotechnical problems at Ray mine. Eng. Geol. 2021, 292, 106261. [Google Scholar] [CrossRef]
- Lu, J.; Li, H.; Chen, X.; Liang, D. Numerical study of remote sensed dredging impacts on the suspended sediment transport in China’s largest freshwater lake. Water 2019, 11, 2449. [Google Scholar] [CrossRef] [Green Version]
- Lama, G.F.C.; Sadeghifar, T.; Azad, M.T.; Sihag, P.; Kisi, O. On the Indirect Estimation of Wind Wave Heights over the Southern Coasts of Caspian Sea: A Comparative Analysis. Water 2022, 14, 843. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, D.; Wang, D.; Cao, A.; Lv, X.; Fan, D. Estimation of spatially varying parameters in three-dimensional cohesive sediment transport models by assimilating remote sensing data. J. Mar. Sci. Technol. 2018, 23, 319–332. [Google Scholar] [CrossRef]
- Volk, T.; Hoffert, M.I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Carbon Cycle Atmos. CO2 Nat. Var. Archean Present 1985, 32, 99–110. [Google Scholar]
- Iseki, K. Vertical transport of particulate organic matter in the deep Bering Sea and Gulf of Alaska. J. Oceanogr. Soc. Jpn. 1981, 37, 101–110. [Google Scholar] [CrossRef]
- Knauer, G.; Asper, V. Sediment Trap Technology and Sampling; U.S. GOFS Planning Report No. 10; US Global Ocean Flux Study: Woods Hole, MA, USA, 1989. [Google Scholar]
- Helley, E.J.; Smith, W. Development and Calibration of a Pressure-Difference Bedload Sampler; Open-File Report; US Department of the Interior, Geological Survey, Water Resources Division: Menlo Park, CA, USA, 1971; p. 11. [Google Scholar]
- Kraus, N. Application of portable traps for obtaining point measurements of sediment transport rates in the surf zone. J. Coast. Res. 1987, 36, 139–152. [Google Scholar]
- Payo, A.; Wallis, H.; Ellis, M.A. Application of portable streamer traps for obtaining point measurements of total longshore sediment transport rates in mixed sand and gravel beaches. Coast. Eng. 2020, 156, 103580. [Google Scholar] [CrossRef]
- Wang, W.W.; Gong-Bo, M.A.; Cheng, L.; Yuan, L.; Wang, C. Development and Application of Cage-Shaped Sediment Trap. Coast. Eng. 2017, 36, 52–58. [Google Scholar]
- Sui, X.; Yao, L.; Hu, X.; Yan, L. Development progress and key technologies of laser particle size analyzer. J. Electron. Meas. Instrum. 2016, 30, 1449–1459. [Google Scholar]
- Zhang, C.; Wang, C.; Wang, A.J.; Shi, C. Study of Boundary Effects in the Calibration Process of Ocean Turbidity Sensors. Ocean. Technol. 2012, 31, 44–47. [Google Scholar]
- Zhang, S.; Nielsen, P.; Perrochet, P.; Jia, Y.J. Multiscale Superposition and Decomposition of Field-Measured Suspended Sediment Concentrations: Implications for Extending 1DV Models to Coastal Oceans With Advected Fine Sediments. J. Geophys. Res. Ocean. 2021, 126, e2020JC016474. [Google Scholar] [CrossRef]
- Kostaschuk, R.; Best, J.; Villard, P.; Peakall, J.; Franklin, M. Measuring flow velocity and sediment transport with an acoustic Doppler current profiler. Geomorphology 2005, 68, 25–37. [Google Scholar] [CrossRef]
- Nittrouer, C. STRATAFORM: Overview of its design and synthesis of its results. Mar. Geol. 1999, 154, 3–12. [Google Scholar] [CrossRef]
- Ogston, A.; Cacchione, D.; Sternberg, R.; Kineke, G. Observations of storm and river flood-driven sediment transport on the northern California continental shelf. Cont. Shelf Res. 2000, 20, 2141–2162. [Google Scholar] [CrossRef]
- Horton, B.P.; Rossi, V.; Hawkes, A. The sedimentary record of the 2005 hurricane season from the Mississippi and Alabama coastlines. Quat. Int. 2009, 195, 15–30. [Google Scholar] [CrossRef]
- Lapetina, A.; Sheng, Y. Simulating complex storm surge dynamics: Three-dimensionality, vegetation effect, and onshore sediment transport. J. Geophys. Res. Ocean. 2015, 120, 7363–7380. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Ji, Y.; Bi, N.; Lei, K.; Wang, H. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison. Estuar. Coast. Shelf Sci. 2011, 93, 173–181. [Google Scholar] [CrossRef]
- Wheatcroft, R.; Borgeld, J. Oceanic flood deposits on the northern California shelf: Large-scale distribution and small-scale physical properties. Cont. Shelf Res. 2000, 20, 2163–2190. [Google Scholar] [CrossRef]
- Jiang, C.B.; Zhi-Yuan, W.U.; Chen, J.; Liu, J. Review of sediment transport and beach profile changes under storm surge. J. Chang. Univ. Sci. Technol. 2014, 11, 1–9. [Google Scholar]
- Zhang, S.; Jia, Y.; Zhang, Y.; Shan, H. Influence of seepage flows on the erodibility of fluidized silty sediments: Parameterization and mechanisms. J. Geophys. Res. Ocean. 2018, 123, 3307–3321. [Google Scholar] [CrossRef]
- Qin, R. Bed Load Transport of Non-uniform Sand Mixture. J. Sediment Res. 1994, 1, 004. [Google Scholar]
- Gao, F.; Qiao, L.; Li, G. Modelling the dispersal and depositional processes of the suspended sediment in the central South Yellow Sea during the winter. Geol. J. 2016, 51, 35–48. [Google Scholar] [CrossRef]
Monitoring Technology Category | Range | Precision | Timeliness | Samples | Platform |
---|---|---|---|---|---|
sample measurement | No restrictions | low | low | Single sample | yes |
OBS | low | high | high | no | yes |
ABS | low | high | high | no | yes |
ADCP | low | high | high | no | yes |
satellite remote sensing | No restrictions | low | high | no | yes |
sediment traps | No restrictions | high | high | Complex samples | no |
Factors | Assumptions |
---|---|
Flow Rate | Controlled by protective curtain within measurable interval |
Turbidity | Continuous inside and outside the capture tube |
Space | Plenty enough to ensure that the device does not seriously affect the flow field |
Sediment particle size | Most particle sizes larger than the selected screen aperture |
Capacity | Sufficient for long-term in situ monitoring |
Experimental Factors | Experimental Setup | ||||
---|---|---|---|---|---|
Speed (cm/s) | 15 | 20 | 25 | 30 | 35 |
Particle size (mm) | 0.15~0.25 | 0.15~0.25 | 0.15~0.25 | 0.15~0.25 | 0.15~0.25 |
Screen pore size (mm) | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Depth (cm) | 13 | 13 | 13 | 13 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Fei, Z.; Guo, L.; Zhang, J.; Zhang, S.; Zhang, Y. Newly Designed and Experimental Test of the Sediment Trap for Horizontal Transport Flux. Sensors 2022, 22, 4137. https://doi.org/10.3390/s22114137
Liu T, Fei Z, Guo L, Zhang J, Zhang S, Zhang Y. Newly Designed and Experimental Test of the Sediment Trap for Horizontal Transport Flux. Sensors. 2022; 22(11):4137. https://doi.org/10.3390/s22114137
Chicago/Turabian StyleLiu, Tao, Zihang Fei, Lei Guo, Jiarui Zhang, Shaotong Zhang, and Yan Zhang. 2022. "Newly Designed and Experimental Test of the Sediment Trap for Horizontal Transport Flux" Sensors 22, no. 11: 4137. https://doi.org/10.3390/s22114137
APA StyleLiu, T., Fei, Z., Guo, L., Zhang, J., Zhang, S., & Zhang, Y. (2022). Newly Designed and Experimental Test of the Sediment Trap for Horizontal Transport Flux. Sensors, 22(11), 4137. https://doi.org/10.3390/s22114137