Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrode Design
2.2. Sensor System
2.3. Experimental Design
2.4. Database
- ECG reference signal;
- ECG signal acquired from the electrodes on the steering wheel;
- Metadata (e.g., age, height, weight, gender).
2.5. Ground Truth
2.6. Rules for Classification of Usable and Unusable Signals
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subject ID | Recording Day | Age | Gender | Height | Weight | Known Diseases |
---|---|---|---|---|---|---|
7521 | 14 September 2021 | 29 | Female | 176 | 68 | No |
5678 | 15 September 2021 | 24 | Male | 183 | 84 | No |
3008 | 15 September 2021 | 29 | Female | 173 | 64 | No |
1430 | 16 September 2021 | 23 | Male | 180 | 75 | No |
7325 | 16 September 2021 | 25 | Male | 171 | 75 | No |
4467 | 16 September 2021 | 37 | Male | 178 | 74 | No |
0001 | 17 September 2021 | 23 | Male | 195 | 120 | No |
1010 | 17 September 2021 | 29 | Male | 174 | 100 | No |
0312 | 21 September 2021 | 24 | Male | 187 | 80 | No |
1234 | 21 September 2021 | 20 | Female | 178 | 70 | No |
2005 | 21 September 2021 | 22 | Male | 180 | 70 | No |
2209 | 22 September 2021 | 24 | Female | 166 | 67 | No |
1734 | 22 September 2021 | 20 | Male | 187 | 75 | No |
1508 | 23 September 2021 | 22 | Female | 173 | 78 | No |
2001 | 23 September 2021 | 20 | Male | 180 | 145 | No |
1576 | 23 September 2021 | 21 | Male | 176 | 67 | No |
2202 | 23 September 2021 | 22 | Male | 186 | 82 | No |
7657 | 24 September 2021 | 67 | Female | 164 | 63 | No |
0512 | 24 September 2021 | 29 | Male | 176 | 83 | No |
References
- Deserno, T.M. Transforming smart vehicles and smart homes into private diagnostic spaces. In Proceedings of the 2020 2nd Asia Pacific Information Technology Conference, Bali, Indonesia, 17–19 January 2020; pp. 165–171. [Google Scholar]
- WHO Cardiovascular Diseases [Internet]. Copenhagen: WHO Regional Office for Europe UN City. [About 1 Screen]. Available online: https://www.euro.who.int/en/health-topics/noncommunicablediseases/ (accessed on 20 December 2021).
- Steinhubl, S.R.; Waalen, J.; Edwards, A.M.; Ariniello, L.M.; Mehta, R.R.; Ebner, G.S.; Carter, C.; Baca-Motes, K.; Felicione, E.; Sarich, T.; et al. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: The mSToPS randomized clinical trial. JAMA 2018, 320, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Hannon, N.; Sheehan, O.; Kelly, L.; Marnane, M.; Merwick, A.; Moore, A.; Kyne, L.; Duggan, J.; Moroney, J.; McCormack, P.M.E.; et al. Stroke associated with atrial fibrillation--incidence and early outcomes in the north Dublin population stroke study. Cereb. Dis. 2010, 29, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Gheorghiade, M.; Zannad, F.; Sopko, G.; Klein, L.; Piña, I.L.; Konstam, M.A.; Massie, B.M.; Roland, E.; Targum, S.; Collins, S.P.; et al. Tavazzi, L. Acute heart failure syndromes: Current state and framework for future research. Circulation 2005, 112, 3958–3968. [Google Scholar] [CrossRef] [Green Version]
- National Travel Survey: England 2018 [Internet]. London: Department of Transportation. [About 1 Screen]. Available online: https://www.gov.uk/government/statistics/national-travel-survey-2018 (accessed on 15 January 2022).
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.B.; Choi, J.M.; Kim, J.S.; Kim, Y.S.; Baek, H.J.; Ryu, M.S.; Sohn, R.H.; Park, K.S. Nonintrusive biosignal measurement system in a vehicle. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2303–2306. [Google Scholar]
- Baek, H.J.; Lee, H.B.; Kim, J.S.; Choi, J.M.; Kim, K.K.; Park, K.S. Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state. Telemed. e-Health 2009, 15, 182–189. [Google Scholar] [CrossRef]
- Vavrinsky, E.; Tvarozek, V.; Stopjakova, V.; Solarikova, P.; Brezina, I. Monitoring of car driver physiological parameters. In Proceedings of the Eighth International ConferenceAdvanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, 25–27 October 2010; pp. 227–230. [Google Scholar]
- Shin, H.-S.; Jung, S.-J.; Kim, J.-J.; Chung, W.-Y. Real time car driver’s condition monitoring system. In Proceedings of the Sensors, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 951–954. [Google Scholar]
- Heuer, S.; Chamadiya, B.; Gharbi, A.; Kunze, C.; Wagner, M. Unobtrusive in-vehicle biosignal instrumentation for advanced driver assistance and active safety. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences, Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 252–256. [Google Scholar]
- Tomimori, H.; Sano, S.; Nakano, Y. Development of adaptive noise reduction technology for in-vehicle heartbeat sensor. In Proceedings of the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, Australia, 6–9 December 2011; pp. 25–29. [Google Scholar]
- Gomez-Clapers, J.; Casanella, R. A fast and easy-to-use ECG acquisition and heart rate monitoring system using a wireless steering wheel. IEEE Sens. J. 2012, 12, 610–616. [Google Scholar] [CrossRef]
- Silva, H.; Lourenço, A.; Fred, A. In-vehicle driver recognition based on hand ECG signals. In Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, Lisbon, Portugal, 14–17 February 2012; pp. 25–28. [Google Scholar]
- Jung, S.-J.; Shin, H.-S.; Chung, W.-Y. Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transp. Syst. 2014, 8, 43–50. [Google Scholar] [CrossRef]
- Cassani, R.; Falk, T.H.; Horai, A.; Gheorghe, L.A. Evaluating the measurement of driver heart and breathing rates from a sensor-equipped steering wheel using spectrotemporal signal processing. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2843–2847. [Google Scholar]
- Babusiak, B.; Hajducik, A.; Medvecky, S.; Lukac, M.; Klarak, J. Design of smart steering wheel for unobtrusive health and drowsiness monitoring. Sensors 2021, 21, 5285. [Google Scholar] [CrossRef]
- Ahmed, W.; Khalid, S. ECG signal processing for recognition of cardiovascular diseases: A survey. In Proceedings of the 8th International Conference on Innovative Computing Technology (INTECH 2016), Dublin, Ireland, 24–26 August 2016; pp. 677–682. [Google Scholar]
- Laguna, P.; Jane, R.; Caminal, P. Adaptive filtering of ECG baseline wander. In Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine, Paris, France, 29 October–1 November 1992; pp. 508–509. [Google Scholar]
- Hao, W.; Chen, Y.; Xin, Y. ECG baseline wander correction by mean-median filter and discrete wavelet transform. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 2712–2715. [Google Scholar]
- Afsar, F.A.; Riaz, M.S.; Arif, M. A comparison of baseline removal algorithms for electrocardiogram (ECG) based automated diagnosis of coronory heart disease. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Arzeno, N.M.; Deng, Z.-D.; Poon, C.-S. Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 2008, 55, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.P.; Almeida, R.; Olmos, S.; Rocha, A.P.; Laguna, P. A wavelet-based ECG delineator: Evaluation on standard databases. IEEE Trans. Biomed. Eng. 2004, 51, 570–581. [Google Scholar] [CrossRef]
- Abibullaev, B.; Seo, H.D. A new QRS detection method using wavelets and artificial neural networks. J. Med. Syst. 2011, 35, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Coast, D.A.; Stern, R.M.; Cano, G.G.; Briller, S.A. An approach to cardiac arrhythmia analysis using hidden Markov models. IEEE Trans. Biomed. Eng. 1990, 37, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Pandit, D.; Zhang, L.; Aslam, N.; Liu, C.; Hossain, A.; Chattopadhyay, S. An efficient abnormal beat detection scheme from ECG signals using neural network and ensemble classifiers. In Proceedings of the 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014), Dhaka, Bangladesh, 18–20 December 2014; pp. 1–6. [Google Scholar]
- Afsar, F.A.; Akram, M.U.; Arif, M.; Khurshid, J. A pruned fuzzy k-nearest neighbor classifier with application to electrocardiogram based cardiac arrhytmia recognition. In Proceedings of the 2008 IEEE International Multitopic Conference, Karachi, Pakistan, 23–24 December 2008; pp. 143–148. [Google Scholar]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [Google Scholar] [CrossRef]
- Jain, S.K.; Bhaumik, B. An energy efficient ECG signal processor detecting cardiovascular diseases on smartphone. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 314–323. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Himed, B. Adaptive subspace tests for multichannel signal detection in auto-regressive disturbance. IEEE Trans. Signal Process. 2018, 66, 5577–5587. [Google Scholar] [CrossRef]
- Tang, P.; Wang, Y.-L.; Liu, W.; Du, Q.; Li, B.; Chen, W. Adaptive subspace signal detection in a type of structure-nonhomogeneity environment. Signal Process. 2020, 173, 107600. [Google Scholar] [CrossRef]
- DuPont™ INTEXAR™ TE-11C FILM [Internet]. DuPont: Wilmington. [About 1 Screen]. Available online: https://insulectro-pe.com/products/intexar%E2%84%A2-te-11c-film (accessed on 20 December 2021).
- DuPont™ PE874 [Internet]. DuPont: Wilmington. [About 1 Screen]. Available online: https://insulectro-pe.com/products/dupont%E2%84%A2-pe874 (accessed on 20 December 2021).
- Application Programming Interfaces [Internet]. Biosignalplux: Lisbon. [About 1 Screen]. Available online: https://biosignalsplux.com/products/software/apis.html (accessed on 20 December 2021).
- Kashif, M.; Jonas, S.M.; Deserno, T.M. Deterioration of R-wave detection in pathology and noise: A comprehensive analysis using simultaneous truth and performance level estimation. IEEE Trans. Biomed. Eng. 2017, 64, 2163–2175. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Chernenko S [Internet]. ECG Processing-R-Peaks Detection [Internet]. Librow: Kiev. [About 1 Screen]. Available online: http://www.librow.com/articles/article-13 (accessed on 18 November 2021).
- Manikandan, M.; Soman, K.P. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 2012, 7, 118–128. [Google Scholar] [CrossRef]
- Lentini, M. Long ECG and pattern extraction. In Proceedings of the International Conference on Applied Mathematics and Informatics, San Andres Island, Colombia, 24–29 November 2013. [Google Scholar]
- Sartor, M.; Jonas, S.; Wartzek, T.; Leonhardt, S.; Wanner, C.; Marx, N.; Deserno, T.M. Nicht-lineare Zeitnormierung im Langzeit-EKG. In Bildverarbeitung füer Medizin; Springer: Berlin, Heidelberg, 2014; pp. 300–305. [Google Scholar]
- Liu, X.; Yang, J.; Zhu, X.; Zhou, S.; Wang, H.; Zhang, H. A novel r-peak detection method combining energy and wavelet transform in electrocardiogram signal. Biomed. Eng. Appl. Basis Commun. 2014, 26, 1450007. [Google Scholar] [CrossRef]
- Arteaga-Falconi, J.; Al Osman, H.; El Saddik, A. R-peak detection algorithm based on differentiation. In Proceedings of the 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings, Siena, Italy, 15–17 May 2015; pp. 1–4. [Google Scholar]
- Khamis, H.; Weiss, R.; Xie, Y.; Chang, C.-W.; Lovell, N.H.; Redmond, S.J. QRS detection algorithm for telehealth electrocardiogram recordings. IEEE Trans. Biomed. Eng. 2016, 63, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Periodogram Power Spectral Density Estimate [Internet]. Natick: MathWorks. [About 1 Screen]. Available online: https://de.mathworks.com/help/signal/ref/periodogram.html (accessed on 20 December 2021).
- Morelli, D.; Rossi, A.; Cairo, M.; Clifton, D.A. Analysis of the impact of interpolation methods of missing RR-intervals caused by motion artifacts on HRV features estimations. Sensors 2019, 19, 3163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth Filter Design [Internet]. Natick: MathWorks. [About 1 Screen]. Available online: https://de.mathworks.com/help/signal/ref/butter.html (accessed on 15 January 2021).
- Vital Signs [Internet]. U.S. National Library of Medicine: Bethesda. [About 1 Screen]. Available online: https://medlineplus.gov/ency/article/002341.htm (accessed on 1 December 2021).
- Allen, M.; Poggiali, D.; Whitaker, K.; Marshall, T.R.; van Langen, J.; Kievit, R.A. Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res. 2019, 4, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, G.; Li, T.; Li, C.; Liu, P.X.; Li, D. Vision-based fatigue driving recognition method integrating heart rate and facial features. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3089–3100. [Google Scholar] [CrossRef]
- Schires, E.; Georgiou, P.; Lande, T.S. Vital sign monitoring through the back using an uwb impulse radar with body coupled antennas. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Eilebrecht, B.; Wartzek, T.; Leonhardt, S. The smart car seat: Personalized monitoring of vital signs in automotive applications. Pers. Ubiquit. Comput. 2011, 15, 707–715. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Y.; Song, S.; Liang, G.; Ni, H. Heart rate extraction based on near-infrared camera: Towards driver state monitoring. IEEE Access 2018, 6, 33076–33087. [Google Scholar] [CrossRef]
- Warnecke, J.M.; Boeker, N.; Spicher, N.; Wang, J.; Flormann, M.; Deserno, T.M. Sensor fusion for robust heartbeat detection during driving. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 447–450. [Google Scholar]
- Priniotakis, G.; Westbroek, P.; Van Langenhove, L.; Hertleer, C. Electrochemical impedance spectroscopy as an objective method for characterization of textile electrodes. Trans. Inst. Meas. Control 2007, 29, 271–281. [Google Scholar] [CrossRef]
- Sunaga, T.; Ikehira, H.; Furukawa, S.; Shinkai, H.; Kobayashi, H.; Matsumoto, Y.; Yoshitome, E.; Obata, T.; Tanada, S.; Murata, H.; et al. Measurement of the electrical properties of human skin and the variation among subjects with certain skin conditions. Phys. Med. Biol. 2002, 47, N11–N15. [Google Scholar] [CrossRef]
- Meseguer, J.E.; Calafate, C.T.; Cano, J.C. On the correlation between heart rate and driving style in real driving scenarios. Mob. Netw. Appl. 2018, 23, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Spicher, N.; Klingenberg, A.; Purrucker, V.; Deserno, T.M. Edge computing in 5G cellular networks for real-time analysis of electrocardiography recorded with wearable textile sensors. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 1735–1739. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warnecke, J.M.; Ganapathy, N.; Koch, E.; Dietzel, A.; Flormann, M.; Henze, R.; Deserno, T.M. Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors 2022, 22, 4198. https://doi.org/10.3390/s22114198
Warnecke JM, Ganapathy N, Koch E, Dietzel A, Flormann M, Henze R, Deserno TM. Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors. 2022; 22(11):4198. https://doi.org/10.3390/s22114198
Chicago/Turabian StyleWarnecke, Joana M., Nagarajan Ganapathy, Eugen Koch, Andreas Dietzel, Maximilian Flormann, Roman Henze, and Thomas M. Deserno. 2022. "Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving" Sensors 22, no. 11: 4198. https://doi.org/10.3390/s22114198
APA StyleWarnecke, J. M., Ganapathy, N., Koch, E., Dietzel, A., Flormann, M., Henze, R., & Deserno, T. M. (2022). Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors, 22(11), 4198. https://doi.org/10.3390/s22114198