Research on Improving Satellite Positioning Precision Based on Multi-Frequency Navigation Signals
Abstract
:1. Introduction
2. Methodology and Equations
2.1. Virtual Clock Technology
2.2. Physical Augmentation Factor of Precision (PAFP)
2.3. Positioning Solution of Multi-Frequency Receiver
3. Experimental Data and Analysis Indicators
3.1. Observation Data of CAPS System
3.2. Observational Data from GNSS Systems
3.3. Analysis Indicators
3.3.1. Root Mean Square Error (RMSE)
3.3.2. Improvement Percentage (IP)
3.3.3. Standard Deviation (STD)
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xie, G. Principles of GPS and Receiver Design, 1st ed.; Publishing House of Electronics Industry: Beijing, China, 2009; pp. 110–115. [Google Scholar]
- Chen, J.Y.; Liu, J.N.; Zhang, Y.P.; Hu, J.G.; Ge, M.R. On Distrubuted Wide Area Differential GPS Time Kinematic Positioning System. Acta Geod. Cartogr. Sin. 1998, 27, 1–8. [Google Scholar]
- Ashkenazi, V.; Hill, C.J.; Ochieng, W.Y.; Nagle, J. Wide-Area Differential GPS: A Performance Study. Navigation 1993, 40, 297–319. [Google Scholar] [CrossRef]
- Liu, X.L.; Wu, Y.; Liu, W.K. Correction of the Ephemeris and Satellite Clock of GPS Wide Area Augmentation System and User Performance Analysis. J. Geomat. 2019, 44, 79–84. [Google Scholar]
- Peng, Y.; Scales, W.A.; Hartinger, M.D.; Xu, Z.; Coyle, S. Characterization of multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. Satell. Navig. 2021, 2, a14. [Google Scholar] [CrossRef]
- Sivavaraprasad, G.; Venkata Ratnam, D. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station. Adv. Space Res. 2017, 60, 475–490. [Google Scholar] [CrossRef]
- Guo, J.M.; Zhou, M.D.; Shi, J.B.; Huang, C.J. FARSE scheme for single epoch GPS solution based on DUFCOM and DC algorithm and its performance analysis. Surv. Rev. 2014, 46, 426–431. [Google Scholar] [CrossRef]
- Wang, M.; Tao, S.; Zhang, W.W.; Hao, H. Analysis of BDS/GPS Signals’ Characteristics and Navigation Accuracy for a Geostationary Satellite. Remote Sens. 2021, 13, 1967. [Google Scholar] [CrossRef]
- Januszewski, J. Sources of Error in Satellite Navigation Positioning. Trans. Nav. Int. J. Mar. Navig. Saf. Sea Transp. 2017, 11, 419–423. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, T.; Huang, Y.; Li, J. Analysis of Optimal Constellation Selection on Based on Satellite Positioning Error. J. Xi’an Jiaotong Univ. 2007, 10, 86–89. [Google Scholar]
- Xu, X.; Ma, L.; Ai, G. Satellite Selection with Muli-Objective Genetic Algorithm for Multi-GNSS Constellations. J. Shanghai Jiaotong Univ. 2017, 51, 281. [Google Scholar]
- Abedi, A.A.; Mosavi, M.R.; Mohammadi, K. A new recursive satellite selection method for multi-constellation GNSS. Surv. Rev. 2020, 52, 330–340. [Google Scholar] [CrossRef]
- Deng, C.; Zhuo, Y.; Wu, T. Constellation of a Regional Satellite Navigation System. J. Univ. Electron. Sci. Technol. China 2006, 5, 725–728. [Google Scholar]
- Yang, D.; Zeng, Q.; Liu, J.; Hu, Q. Analysis of performance of multi-constellation modernized satellite navigation system. Comput. Simul. 2019, 29, 65–68. [Google Scholar]
- Zhang, Y.; Li, Z.; Wang, Z.; Li, R.; Yuan, H. The improvement of BDS Observation Geometry with LEO constellations in Orbit Determination. Measurement 2021, 177, 109228. [Google Scholar] [CrossRef]
- Bahadur, B.; Nohutcu, M. PPPH: A MATLAB-based software for multi-GNSS precise point positioning analysis. GPS Solut. 2018, 22, 113. [Google Scholar] [CrossRef]
- Han, S. Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J. Geod. 1997, 71, 351–361. [Google Scholar] [CrossRef]
- Ai, G.X.; Shi, H.L.; Wu, H.T.; Yan, Y.H.; Bian, Y.J.; Hu, Y.H.; Li, Z.G.; Guo, J.; Cai, X.D. A positioning system based on communication satellites and the Chinese Area Positioning System (CAPS). Chin. J. Astron. Astrophys. 2008, 8, 611–630. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Li, G.; Zhu, Q. Positionning Algorithm with Three Satellite Based on Chinese Area Position System. Comput. Appl. 2008, 28, 384–386. [Google Scholar]
- Wang, M.; Ma, L.; Zhang, L.; Ji, H.; Shi, H. Three-satellite Positioning Algorithm with Altitude Aiding for Regional Navigation Satellite System. J. Shanghai Jiaotong Univ. 2012, 46, 1647. [Google Scholar]
- Li, X.; Wu, H.; Bian, Y.; Wang, D. Virtual Satellite Atomic Clock with Pseudo-range Differential Function. Sci. China Ser. G Phys. Mech. Astron. 2008, 52, 353–359. [Google Scholar] [CrossRef]
- Ai, G.; Ma, L.; Shi, H.; Ji, H. A Method of Doubling Positioning Precision in Satellite Navigation and Positioning System. PRC Patent No. 201210090864.8. 2012.
- Parkinson, B.; Spilker, J., Jr.; Axelrad, P.; Enge, P. Global Positioning System Theory and Applications; American Institute of Aeronautics: Washington, DC, USA, 1996; pp. 202–207. [Google Scholar]
- Zhu, F. Development of Real-time Error Correction System of The Satellite Virtual Atomic Clock; University of Chinese Academy of Sciences (National Time Center, Chinese Academy of Sciences): Xi’an, China, 2011. [Google Scholar]
- Felski, A.; Jaskólski, K.; Zwolak, K.; Piskur, P. Analysis of Satellite Compass Error’s Spectrum. Sensors 2020, 20, 4067. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, Y.; Liu, Y.; Yuan, G. BeiDou/GPS combination positioning methodology. J. Remote Sens. 2014, 18, 1087–1097. [Google Scholar]
The Name of the Band | Up-Band (MHz) | Down-Band (MHz) | Available Bandwidth (MHz) | The Number of Available Frequency |
---|---|---|---|---|
Standard C-band | 5925~6425 | 3700~4200 | 500 | 78 |
Extended C-band | 6425~6725 | 3400~3700 | 500 | |
Standard Ku-band | 14,000~14,500 | 12,250~12,750 | 500 | 139 |
Extended Ku-band | 13,750~14,000 | 10,950~11,200 | 250 | |
Planning Ku-Band | 12,750~13,250 | 10,700~10,950, 11,200~11,450 | 500 | |
Broadcast Ku band | 17,300~17,800 | 11,700~12,200 | 500 |
The Number of Downlink Frequencies | CAPS | GNSS | ||||
---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | |
1 | 6.85 | 6.82 | 6.83 | 2.91 | 1.17 | 1.76 |
2 | 4.84 | 4.82 | 4.83 | 2.06 | 0.83 | 1.24 |
3 | 3.96 | 3.94 | 3.94 | 1.68 | 0.68 | 1.01 |
4 | 3.43 | 3.41 | 3.41 | 1.45 | 0.58 | 0.88 |
5 | 3.06 | 3.05 | 3.05 | 1.3 | 0.52 | 0.79 |
6 | 2.8 | 2.78 | 2.79 | 1.19 | 0.48 | 0.72 |
7 | 2.59 | 2.58 | 2.58 | 1.1 | 0.44 | 0.66 |
8 | 2.42 | 2.41 | 2.41 | 1.03 | 0.41 | 0.62 |
9 | 2.28 | 2.27 | 2.28 | 0.97 | 0.39 | 0.59 |
10 | 2.17 | 2.16 | 2.16 | 0.92 | 0.37 | 0.56 |
11 | 2.07 | 2.06 | 2.06 | 0.88 | 0.35 | 0.53 |
12 | 1.98 | 1.97 | 1.97 | 0.84 | 0.34 | 0.51 |
The Number of Downlink Frequencies | RMS (m) | IP (%) | STD (m) | |||||
---|---|---|---|---|---|---|---|---|
E | N | 2D | E | N | 2D | E | N | |
1 | 1.2 | 6.83 | 6.93 | - | - | - | 2.24 | 3.91 |
2 | 0.93 | 4.79 | 4.88 | 23 | 30 | 30 | 1.56 | 2.77 |
3 | 0.81 | 3.97 | 4.05 | 33 | 42 | 42 | 1.27 | 2.32 |
4 | 0.75 | 3.48 | 3.56 | 38 | 49 | 49 | 1.1 | 2.05 |
5 | 0.69 | 3.16 | 3.23 | 42 | 54 | 53 | 0.99 | 1.86 |
6 | 0.66 | 2.94 | 3.02 | 45 | 57 | 56 | 0.9 | 1.76 |
7 | 0.64 | 2.75 | 2.82 | 47 | 60 | 59 | 0.84 | 1.64 |
8 | 0.62 | 2.59 | 2.66 | 49 | 62 | 62 | 0.78 | 1.56 |
9 | 0.61 | 2.51 | 2.58 | 49 | 63 | 63 | 0.75 | 1.52 |
10 | 0.6 | 2.43 | 2.5 | 51 | 64 | 64 | 0.69 | 1.49 |
11 | 0.59 | 2.33 | 2.41 | 51 | 66 | 65 | 0.67 | 1.43 |
12 | 0.57 | 2.18 | 2.26 | 52 | 68 | 67 | 0.62 | 1.35 |
The Number of Downlink Frequencies | RMS (m) | IP (%) | STD (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | 3D | E | N | U | 3D | E | N | U | |
1 | 0.62 | 0.8 | 1.49 | 1.8 | - | - | - | - | 0.84 | 1.16 | 1.08 |
2 | 0.44 | 0.56 | 1.04 | 1.26 | 29 | 29 | 30 | 30 | 0.58 | 0.81 | 0.76 |
3 | 0.36 | 0.46 | 0.84 | 1.03 | 41 | 43 | 43 | 43 | 0.49 | 0.66 | 0.61 |
4 | 0.31 | 0.4 | 0.75 | 0.9 | 50 | 50 | 50 | 50 | 0.42 | 0.58 | 0.54 |
5 | 0.28 | 0.36 | 0.65 | 0.79 | 55 | 55 | 56 | 56 | 0.38 | 0.51 | 0.47 |
6 | 0.25 | 0.33 | 0.59 | 0.72 | 59 | 59 | 60 | 60 | 0.33 | 0.47 | 0.43 |
7 | 0.23 | 0.3 | 0.57 | 0.68 | 62 | 62 | 62 | 62 | 0.32 | 0.44 | 0.4 |
8 | 0.22 | 0.28 | 0.53 | 0.64 | 65 | 64 | 64 | 64 | 0.29 | 0.41 | 0.39 |
9 | 0.21 | 0.26 | 0.49 | 0.59 | 66 | 67 | 67 | 67 | 0.28 | 0.38 | 0.35 |
10 | 0.19 | 0.25 | 0.47 | 0.57 | 69 | 68 | 68 | 68 | 0.26 | 0.36 | 0.34 |
11 | 0.18 | 0.25 | 0.44 | 0.54 | 71 | 69 | 70 | 70 | 0.24 | 0.35 | 0.32 |
12 | 0.17 | 0.23 | 0.43 | 0.52 | 72 | 71 | 71 | 71 | 0.24 | 0.33 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, T.; Ma, L.; Ai, G. Research on Improving Satellite Positioning Precision Based on Multi-Frequency Navigation Signals. Sensors 2022, 22, 4210. https://doi.org/10.3390/s22114210
Kong T, Ma L, Ai G. Research on Improving Satellite Positioning Precision Based on Multi-Frequency Navigation Signals. Sensors. 2022; 22(11):4210. https://doi.org/10.3390/s22114210
Chicago/Turabian StyleKong, Ting, Lihua Ma, and Guoxiang Ai. 2022. "Research on Improving Satellite Positioning Precision Based on Multi-Frequency Navigation Signals" Sensors 22, no. 11: 4210. https://doi.org/10.3390/s22114210
APA StyleKong, T., Ma, L., & Ai, G. (2022). Research on Improving Satellite Positioning Precision Based on Multi-Frequency Navigation Signals. Sensors, 22(11), 4210. https://doi.org/10.3390/s22114210