Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment
Abstract
:1. Introduction
1.1. Related Literature
1.2. Motivation and Contributions
1.3. Article Structure
2. Modeling of Wireless Channel for T2T Communication in Tunnel Scenario
2.1. Wireless Channel Model of T2T Communication
2.2. Matching of Receiving and Transmitting Rays
2.3. Doppler Effect at the Transmitter and Receiver
3. Doppler Spread Simulation and Results
3.1. Simulation Model and Parameter Settings of RT
3.2. Simulation Results and Analysis
4. Physical Simulation Model of T2T Communication Channel in Tunnel
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Khyam, M.; He, J.; Pesch, D.; Moessner, K.; Saad, W.; Poor, H. 6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities. Proc. IEEE Inst. Electr. Electron. Eng. 2022, 1–23. [Google Scholar] [CrossRef]
- Alnasser, A.; Sun, H.; Jiang, J. Recommendation-Based Trust Model for Vehicle-to-Everything (V2X). IEEE Internet Things J. 2020, 7, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Naik, G.; Choudhury, B.; Park, J. IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications. IEEE Access 2019, 7, 70169–70184. [Google Scholar]
- Gyawali, S.; Xu, S.; Qian, Y.; Hu, R. Challenges and Solutions for Cellular Based V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 222–255. [Google Scholar] [CrossRef]
- Sehla, K.; Nguyen, T.; Pujolle, G.; Velloso, P. Resource Allocation Modes in C-V2X: From LTE-V2X to 5G-V2X. IEEE Internet Things J. 2022, 9, 8291–8314. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.; Wong, K.; Imran, M.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G Wireless Communications: Vision and Potential Techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Akyildiz, I.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Ihsan, A.; Nguyen, T.; Javed, M.; Ali, Z. NOMA-enabled Backscatter Communications for Green Transportation in Automotive-Industry 5.0. IEEE Trans. Industr. Inform. 2022, in press. [Google Scholar] [CrossRef]
- Khan, W.; Jameel, F.; Kumar, N.; Jäntti, R.; Guizani, M. Backscatter-Enabled Efficient V2X Communication with Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2021, 70, 1724–1735. [Google Scholar] [CrossRef]
- ElHalawany, B.; Jameel, F.; Costa, D.; Dias, U.; Wu, K. Performance Analysis of Downlink NOMA Systems Over κ-μ Shadowed Fading Channels. IEEE Trans. Veh. Technol. 2020, 69, 1046–1050. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Bao, X.; Liu, W. Centralized Resource Allocation and Distributed Power Control for NOMA-Integrated NR V2X. IEEE Internet Things J. 2021, 8, 16522–16534. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, M.; Chen, S.; Shan, L.; Xiao, M.; Xu, M. Applying NOMA to NR V2X: A graph-based matching and cooperative game approach. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–5. [Google Scholar]
- Ihsan, A.; Chen, W.; Zhang, S.; Xu, S. Energy-Efficient NOMA Multicasting System for Beyond 5G Cellular V2X Communications with Imperfect CSI. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Do, D.; Anh Le, T.; Nguyen, N.; Li, X.; Rabie, K.M. Joint Impacts of Imperfect CSI and Imperfect SIC in Cognitive Radio-Assisted NOMA-V2X Communications. IEEE Access 2020, 8, 128629–128645. [Google Scholar] [CrossRef]
- Liao, Y.; Yang, G.; Liang, Y. Resource Allocation in NOMA-Enhanced Full-Duplex Symbiotic Radio Networks. IEEE Access 2020, 8, 22709–22720. [Google Scholar] [CrossRef]
- Khan, W.; Jamshed, M.; Lagunas, E.; Chatzinotas, S.; Li, X.; Wang, H. Energy Efficiency Optimization for Backscatter Enhanced NOMA Cooperative V2X Communications under Imperfect CSI. arXiv 2022, arXiv:2202.01592. [Google Scholar]
- Liu, J.; Ahmed, M.; Mirza, M.; Khan, W.; Xu, D.; Li, J.; Aziz, A.; Han, Z. RL/DRL Meets Vehicular Task Offloading Using Edge and Vehicular Cloudlet: A Survey. IEEE Internet Things J. 2022, 9, 8315–8338. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.; Lau, B.; Haneda, K.; Liu, B.; Wang, C.; Yang, M.; Oestges, C.; et al. Artificial Intelligence Enabled Radio Propagation for Communications—Part I: Channel Characterization and Antenna-Channel Optimization. IEEE Trans. Antennas Propag. 2022, in press. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.; Lau, B.; Haneda, K.; Liu, B.; Wang, C.; Yang, M.; Oestges, C.; et al. Artificial Intelligence Enabled Radio Propagation for Communications—Part II: Scenario Identification and Channel Modeling. IEEE Trans. Antennas Propag. 2022. early access. [Google Scholar] [CrossRef]
- Guo, S.; Zhou, X. Robust Resource Allocation with Imperfect Channel Estimation in NOMA-Based Heterogeneous Vehicular Networks. IEEE Trans. Commun. 2019, 67, 2321–2332. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Zhang, H.; Ren, Y.; Chen, K.; Hanzo, L. Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks. IEEE Commun. Surv. Tutor. 2020, 22, 1472–1514. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Yin, X.; Lee, J. A novel power spectrum-based sequential tracker for time-variant radio propagation channel. IEEE Access 2020, 8, 151267–151278. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H. Deep Learning for Fading Channel Prediction. IEEE Open J. Commun. Soc. 2020, 1, 320–332. [Google Scholar] [CrossRef]
- Ratnam, V.; Chen, H.; Pawar, S.; Zhang, B.; Zhang, C.; Kim, Y.; Lee, S.; Cho, M.; Yoon, S. FadeNet: Deep Learning-Based mm-Wave Large-Scale Channel Fading Prediction and its Applications. IEEE Access 2021, 9, 3278–3290. [Google Scholar] [CrossRef]
- Bai, L.; Xu, Q.; Wu, S.; Ventouras, S.; Goussetis, G. A Novel Atmosphere-Informed Data-Driven Predictive Channel Modeling for B5G/6G Satellite-Terrestrial Wireless Communication Systems at Q-Band. IEEE Trans. Veh. Technol. 2020, 69, 14225–14237. [Google Scholar] [CrossRef]
- Zhao, X.; Du, F.; Geng, S.; Fu, Z.; Wang, Z.; Zhang, Y.; Zhou, Z.; Zhang, L.; Yang, L. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework. IEEE J. Sel. Areas Commun. 2020, 38, 1945–1954. [Google Scholar] [CrossRef]
- Levie, R.; Yapar, Ç.; Kutyniok, G.; Caire, G. Radiounet: Fast radio map estimation with convolutional neural networks. IEEE Trans. Wireless Commun. 2021, 20, 4001–4015. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, C.; Wang, S.; Bao, Y.; Yin, J. The design and performance test of train control data communication systems based on train-to-train communication. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 588–592. [Google Scholar]
- Song, Z.; Ding, J.; Wang, Y.; Sun, X.; Sun, B.; Zhong, Z. Measurement-based doppler analysis in viaduct scenarios for railway. In Proceedings of the 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 1–4 December 2021; pp. 1–3. [Google Scholar]
- Unterhuber, P.; Walter, M.; Fiebig, U.-C.; Kürner, T. Stochastic Channel Parameters for Train-to-Train Communications. IEEE OJAP 2021, 2, 778–792. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.; Hong, J.; Lim, J.; Chong, Y. Propagation characteristics of Urban and Highway Vehicle-to-Everything(V2X) Channels at 5.9 GHz. In In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22 October 2021; pp. 872–876. [Google Scholar]
- Abd, H.; Al-Heety, A.; Mahmoud, M. LTE-V2I system performance under different stochastic channel model for highway scenarios. In Proceedings of the 2021 International Conference on Communication & Information Technology (ICICT), Basrah, Iraq, 5–6 June 2021; pp. 140–145. [Google Scholar]
- Xiong, B.; Zhang, Z.; Zhang, J.; Jiang, H.; Dang, J.; Wu, L. Novel Multi-Mobility V2X Channel Model in the Presence of Randomly Moving Clusters. IEEE Trans. Wirel. Commun. 2021, 20, 3180–3195. [Google Scholar] [CrossRef]
- Gong, Z.; Li, C.; Jiang, F.; Win, M. Data-Aided Doppler Compensation for High-Speed Railway Communications Over mmWave Bands. IEEE Trans. Wirel. Commun. 2021, 20, 520–534. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Z.; Zhou, J.; Dang, J.; Wu, L. A General 3D Non-Stationary Wideband Twin-Cluster Channel Model for 5G V2V Tunnel Communication Environments. IEEE Access 2019, 7, 137744–137751. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, H.; Zheng, G. Channel characteristics analysis of ultra-high mobility MIMO wireless system in tunnel scenario. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar]
- Saleem, A.; He, Y. Investigation of massive MIMO channel spatial characteristics for indoor subway tunnel environment. In Proceedings of the 2021 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 November 2021; pp. 162–167. [Google Scholar]
- Liu, Y.; Wang, C.-X.; Lopez, C.F.; Goussetis, G.; Yang, Y.; Karagiannidis, G.K. 3D Non-Stationary Wideband Tunnel Channel Models for 5G High-Speed Train Wireless Communications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 259–272. [Google Scholar] [CrossRef]
- Wang, C.; Ji, W.; Zheng, G.; Saleem, A. Analysis of Propagation Characteristics for Various Subway Tunnel Scenarios at 28 GHz. Int. J. Antennas Propag. 2021, 2021, 7666624. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, K.; Xu, D.; Gao, X.; Huang, S. Wideband RF photonic phase shifter with a full 360° phase tunable range. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 December 2017; pp. 1–3. [Google Scholar]
- Xia, J.; Slim, B. Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5° RMS Magnitude/Phase Errors and Enhanced Linearity. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 914–918. [Google Scholar] [CrossRef]
- Hu, Z.; Ji, W.; Zhao, H.; Zhai, X.; Saleem, A.; Zheng, G. Channel Measurement for Multiple Frequency Bands in Subway Tunnel Scenario. Int. J. Antennas Propag. 2021, 2021, 9991758. [Google Scholar] [CrossRef]
- Saleem, A.; Cui, H.; He, Y.; Boag, A. Channel Propagation Characteristics for Massive MIMO Systems in Tunnel Environment. IEEE Antennas Propag. Mag. 2022, accepted. [Google Scholar]
- Yin, X.; Liu, X.; Zheng, G.; Saleem, A.; Zhai, X. 28-GHz Channel Characterization for a Short Tunnel. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1146–1148. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
fc (GHz) | 28 |
(L, W, H) (m) | (300,5,5) |
(xt, yt, zt) (m) | (100,0,2) |
(xr, yr, zr) (m) | (200,0,2) |
(vt, vr) (km/h) | (160,80), (160,160) |
Tunnel Parameters | Material | Permittivity | Conductivity (S/m) | Thickness (m) | Roughness (m) |
Concrete | 5.31 | 0.48 | 0.5 | 0.005 | |
Ray Parameters | Reflections Times | Transmission Times | Scattering Times | Interval of Rays | Number of Rays |
10 | 0 | 2 | 0.25° | 250 |
Number of Multipath | |||||
---|---|---|---|---|---|
1 | 0 | 90 | −180 | 90 | −39.8109 |
2 | −2.86241 | 90 | −177.138 | 90 | −40.3604 |
3 | 2.86241 | 90 | 177.138 | 90 | −40.3604 |
4 | −5.71059 | 90 | 174.289 | 90 | −41.6511 |
5 | 5.71059 | 90 | −174.289 | 90 | −41.6511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Wang, X.; Zhang, K.; Jin, Y.; Zheng, G. Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment. Sensors 2022, 22, 4289. https://doi.org/10.3390/s22114289
Zhao P, Wang X, Zhang K, Jin Y, Zheng G. Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment. Sensors. 2022; 22(11):4289. https://doi.org/10.3390/s22114289
Chicago/Turabian StyleZhao, Pengyu, Xiaoyong Wang, Kai Zhang, Yanliang Jin, and Guoxin Zheng. 2022. "Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment" Sensors 22, no. 11: 4289. https://doi.org/10.3390/s22114289
APA StyleZhao, P., Wang, X., Zhang, K., Jin, Y., & Zheng, G. (2022). Doppler Modeling and Simulation of Train-to-Train Communication in Metro Tunnel Environment. Sensors, 22(11), 4289. https://doi.org/10.3390/s22114289