A Variable-Volume Heart Model for Galvanic Coupling-Based Conductive Intracardiac Communication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Circuit-Coupled FEM Model for Conductive Intracardiac Communication
2.2. Variable Volume with the Cardiac Cycle
2.3. In Vitro Experiment
2.4. Dynamic In Vitro Experiment
3. Results
3.1. Simulation Results
3.1.1. Input Impedance
3.1.2. Thickness of Myocardial Tissue
3.1.3. Distance between Transmitter and Receiver
3.2. Simulation of Dynamic Model
3.3. In Vitro Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erik, O.U.; Nicolaas, P.Z.; Norbert, M.; Carel, C.; Thijs, H.; Pieter, A.D. Incidence and predictors of short- and long-term complications in pacemaker therapy: The FOLLOWPACE study. Heart Rhythm 2012, 9, 728–735. [Google Scholar]
- Reynolds, D.; Duray, G.; Omar, R.; Soejima, K.; Neuzil, P.; Zhang, S.; Narasimhan, C.; Steinwender, C.; Brugada, J.; Lloyd, M.; et al. A Leadless Intracardiac Transcatheter Pacing System. New Engl. J. Med. 2016, 374, 2604–2605. [Google Scholar] [CrossRef] [PubMed]
- Vardas, P.; Auricchio, A.; Blanc, J.J.; Daubert, J.; Drexler, H.; Ector, H. Guidelines for Cardiac Pacing and Cardiac Resynchronization Therapy. Europace 2007, 10, 959–998. [Google Scholar]
- Wegmüller, M.S. Intra-Body Communication for Biomedical Sensor Networks. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2007. [Google Scholar]
- Noormohammadi, R.; Khaleghi, A.; Balasingham, I. Galvanic Impulse Wireless Communication for Biomedical Implants. IEEE Access 2021, 9, 38602–38610. [Google Scholar] [CrossRef]
- Park, M.; Kang, T.; Lim, I.; Oh, K.I.; Kim, S.E.; Lee, J.J.; Park, H.I. Low-Power, High Data-Rate Digital Capsule Endoscopy Using Human Body Communication. Appl. Sci. 2018, 8, 1414. [Google Scholar] [CrossRef] [Green Version]
- Bereuter, L.; Kuenzle, T.; Niederhauser, T.; Kucera, M.; Obrist, D.; Reichlin, T.; Tanner, H.; Haeberlin, A. Fundamental Characterization of Conductive Intracardiac Communication for Leadless Multisite Pacemaker Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Bereuter, L.; Niederhauser, T.; Kucera, M.; Loosli, D.; Steib, I.; Schildknecht, M.; Zurbuchen, A.; Noti, F.; Tanner, H.; Reichilin, T.; et al. Leadless cardiac resynchronization therapy: An in vivo proof-of-concept study of wireless pacemaker synchronization. Heart Rhythm 2019, 16, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Maldari, M.; Albatat, M.; Bergsland, J.; Haddab, Y.; Jabbour, C.; Desgreys, P. Wide Frequency Characterization of Intra-Body Communication for Leadless Pacemakers. IEEE Trans. Biomed. Eng. 2020, 67, 3223–3233. [Google Scholar] [CrossRef] [PubMed]
- Jiahui, W.; Yiming, L.; Yueming, G.; Min, D. Equivalent Heart Model for Intracardiac Communication Channel Analysis. In Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference, Fuzhou, China, 11 October 2020. [Google Scholar]
- Opie, L.H. Heart Physiology: From Cell to Circulation, 3rd ed.; Lippincott Williams and Wilkins Inc.: Philadelphia, PA, USA, 1997. [Google Scholar]
- Alicia, M.M.; Juan, C.; Michael, R.; Sanjay, K.P.; Dudley, J.P. Reference left atrial dimensions and volumes by steady state free precision cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2010, 12, 65. [Google Scholar]
- Alicia, M.M.; Kumari, P.S.; Mohammed, K.; Dudley, J.P. Normalized Left Ventricular Systolic and Diastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2006, 8, 417–426. [Google Scholar]
- Alicia, M.M.; Juan, C.; Michael, R.; Sanjay, K.P.; Dudley, J.P. Reference right atrial dimensions and volume estimation by steady state free precision cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2013, 15, 29. [Google Scholar]
- Reddy, V.Y.; Exner, D.V.; Cantillon, D.J.; Doshi, R.; Bunch, T.J.; Tomassoni, G.F.; Friedman, P.A.; Estes, N.A.M., III; Ip, J.; Niazi, I.; et al. Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker. New Engl. J. Med. 2015, 373, 1125–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissue II: Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sio Hang, P.; Yueming, G.; Pengun, M.; Mang, I.V.; Min, D. Quasi-Static Modeling of Human Limb for Intra-Body Communications with Experiments. Inf. Technol. Biomed. IEEE Trans. 2011, 15, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Joonsung, B.; Hyunwoo, C.; Kiseok, S.; Hyunwoo, L.; Hoi-Jun, Y. The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication. IEEE Trans. Microw. Theory Tech. 2012, 60, 582–593. [Google Scholar]
- Behailu, K.; Mirhojjat, S.; Daniel, L.; Micheal, F. Investigation of Galvanic-Coupled Intrabody Communication Using the Human Body Circuit Mode. IEEE J. Biomed. Health Inform. 2014, 18, 1196–1206. [Google Scholar]
Chamber | Static Volume (mL) | Dynamic Volume (mL) | ||
---|---|---|---|---|
ES | MD | ED | ||
LA | 73 ± 15 | 73 | 73 | 73 |
LV | 95 ± 14 | 47 | 118.25 | 142 |
RA | 100 ± 20 | 100 | 100 | 100 |
LV | 94 ± 15 | 50 | 120.5 | 144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Gao, Y.; Chen, L.; Liu, T.; Yang, J.; Pun, S.; Vai, M.; Du, M. A Variable-Volume Heart Model for Galvanic Coupling-Based Conductive Intracardiac Communication. Sensors 2022, 22, 4455. https://doi.org/10.3390/s22124455
Liu Y, Gao Y, Chen L, Liu T, Yang J, Pun S, Vai M, Du M. A Variable-Volume Heart Model for Galvanic Coupling-Based Conductive Intracardiac Communication. Sensors. 2022; 22(12):4455. https://doi.org/10.3390/s22124455
Chicago/Turabian StyleLiu, Yiming, Yueming Gao, Liting Chen, Tao Liu, Jiejie Yang, Siohang Pun, Mangi Vai, and Min Du. 2022. "A Variable-Volume Heart Model for Galvanic Coupling-Based Conductive Intracardiac Communication" Sensors 22, no. 12: 4455. https://doi.org/10.3390/s22124455
APA StyleLiu, Y., Gao, Y., Chen, L., Liu, T., Yang, J., Pun, S., Vai, M., & Du, M. (2022). A Variable-Volume Heart Model for Galvanic Coupling-Based Conductive Intracardiac Communication. Sensors, 22(12), 4455. https://doi.org/10.3390/s22124455