A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits
Abstract
:1. Introduction
- (i)
- To develop and validate an innovative and low-cost application of NIRS to detect and monitor MC presence and growth in cv Golden Delicious through a novel measurement system based on a light source—light transmission—light collection architecture. An integrating sphere (IS) with homogeneous light reflectance proprieties [38] was adopted to compensate the geometrical variability in each fruit and toward the illumination geometry, and a low-cost VIS-NIR commercial spectroradiometer was used to measure the transmitted radiance inside the integrating sphere.
- (ii)
- To develop spectral based algorithms capable of detecting the MC and classifying the fruits in a binary classification framework (e.g., classifying a fruit as healthy or moldy), based on several state of the art machine learning techniques: pattern recognition neural networks (ANN-AP), Logistic Regression (LR), Linear Support Vector Classification (SVC), Random Forest (RF), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Bagging Classifier based on Decision tree (BC).
- (iii)
- To assess the temporal performance of the detection algorithms, i.e., to assess the amount of time after the inoculus at which it becomes detectable.
- (iv)
- To assess the sensitivity of the algorithms, i.e., the minimum amounts of infected tissues that can be detected.
- (v)
- To determine the most important spectral bands responsible for the MC detection, and the minimum number of bands that can be used to further develop low-cost-multispectral rather than hyperspectral detectors.
2. Materials and Methods
2.1. Instrument Setup
2.2. Experimental Measurements
2.3. Data Analysis
2.3.1. Transmittance Retrieval
2.3.2. Band Ratios and Average Transmittance
2.3.3. Binary Classification
Supervised Classification Models
Pattern Recognition Neural Network
3. Results and Discussion
3.1. Infection Rate
3.2. Spectral Correlations
3.3. Transmittance Temporal Pattern
3.4. Binary Classification and ANN-AP
3.4.1. Features Reduction
3.4.2. Binary Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, C.G. Global trade and competition in fresh and processed product markets. In World Trade Review; Aksoy, M.A., Beghin, J.C., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 5, pp. 237–243. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Antúnez, L.; Ares, G.; Swaney-Stueve, M.; Jin, D.; Harker, F. Quality perceptions regarding external appearance of apples: Insights from experts and consumers in four countries. Postharvest Biol. Technol. 2018, 146, 99–107. [Google Scholar] [CrossRef]
- El Khaled, D.; Castellano, N.; Gazquez, J.A.; Salvador, R.G.; Manzano-Agugliaro, F. Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables. J. Clean. Prod. 2017, 140, 1749–1762. [Google Scholar] [CrossRef]
- Granatstein, D.; Kirby, E.; Ostenson, H.; Willer, H. Global situation for organic tree fruits. Sci. Hortic. 2016, 208, 3–12. [Google Scholar] [CrossRef]
- O’Rourke, A.D. The World Apple Market; Routledge: London, UK, 2018. [Google Scholar] [CrossRef]
- Elfar, K.; Zoffoli, J.P.; Latorre, B.A. Identification and characterization of Alternaria species associated with moldy core of apple in chile. Plant Dis. 2018, 102, 2158–2169. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.L.; Zhang, Q.; Sun, X.Y.; Jiang, L.; Zhang, R.; Sun, G.Y.; Zha, Y.L.; Biggs, A.R. Etiology of moldy Core, core browning, and core rot of Fuji apple in China. Plant Dis. 2013, 97, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Ntasiou, P.; Myresiotis, C.; Konstantinou, S.; Papadopoulou-Mourkidou, E.; Karaoglanidis, G.S. Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece. Int. J. Food Microbiol. 2015, 197, 22–29. [Google Scholar] [CrossRef]
- Italian Institute of Statistics. Available online: https://www.istat.it/ (accessed on 18 May 2022).
- Italian Association of Apple Producers. Available online: http://www.assomela.it (accessed on 18 May 2022).
- Basson, E.; Meitz-Hopkins, J.C.; Lennox, C.L. Morphological and molecular identification of fungi associated with South African apple core rot. Eur. J. Plant Pathol. 2019, 153, 849–868. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, Z.; Kulasiri, D.; Wu, J. Detection of early core browning in pears based on statistical features in vibro-acoustic signals. Food Bioprocess Technol. 2021, 14, 887–897. [Google Scholar] [CrossRef]
- Zhao, K.; Zha, Z.; Li, H.; Wu, J. Early detection of moldy apple core based on time-frequency images of vibro-acoustic signals. Postharvest Biol. Technol. 2021, 179, 111589. [Google Scholar] [CrossRef]
- Chayaprasert, W.; Stroshine, R. Rapid sensing of internal browning in whole apples using a low-cost, low-field proton magnetic resonance sensor. Postharvest Biol. Technol. 2005, 36, 291–301. [Google Scholar] [CrossRef]
- Cho, B.-K.; Chayaprasert, W.; Stroshine, R.L. Effects of internal browning and watercore on low field (5.4MHz) proton magnetic resonance measurements of T2 values of whole apples. Postharvest Biol. Technol. 2008, 47, 81–89. [Google Scholar] [CrossRef]
- van Dael, M.; Verboven, P.; Zanella, A.; Sijbers, J.; Nicolai, B. Combination of shape and X-ray inspection for apple internal quality control: In silico analysis of the methodology based on X-ray computed tomography. Postharvest Biol. Technol. 2018, 148, 218–227. [Google Scholar] [CrossRef]
- Hu, W.; Li, J.; Zhu, X.; Wang, Z.; Piao, D.; Zhao, L. Nondestructive detection of underlying moldy lesions of apple using frequency domain diffuse optical tomography. Postharvest Biol. Technol. 2019, 153, 31–42. [Google Scholar] [CrossRef]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Sirisomboon, P. NIR spectroscopy for quality evaluation of fruits and vegetables. Mater. Today Proc. 2018, 5, 22481–22486. [Google Scholar] [CrossRef]
- Cattaneo, T.M.P.; Stellari, A. Review: NIR spectroscopy as a suitable tool for the investigation of the horticultural field. Agronomy 2019, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.Y.; Ker, P.J.; Lau, K.Y.; Hannan, M.A.; Tang, S.G.H. Applications of photonics in agriculture sector: A review. Molecules 2019, 24, 2025. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Ali, A.; Imran, M. Remotely sensed real-time quantification of biophysical and biochemical traits of Citrus (Citrus sinensis L.) fruit orchards—A review. Sci. Hortic. 2021, 282, 110024. [Google Scholar] [CrossRef]
- Goh, J.Q.; Shariff, A.R.M.; Nawi, N.M. Application of optical spectrometer to determine maturity level of oil palm fresh fruit bunches based on analysis of the front equatorial, front basil, back equatorial, back basil and apical parts of the oil palm bunches. Agriculture 2021, 11, 1179. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Wang, Z.; Fan, S. Early detection of decay on apples using hyperspectral reflectance imaging combining both principal component analysis and improved watershed segmentation method. Postharvest Biol. Technol. 2018, 149, 235–246. [Google Scholar] [CrossRef]
- Sánchez, N.H.; Lurol, S.; Roger, J.M.; Bellon-Maurel, V. Robustness of models based on NIR spectra for sugar content prediction in apples. J. Near Infrared Spectrosc. 2003, 11, 97–107. [Google Scholar] [CrossRef]
- Giovanelli, G.; Sinelli, N.; Beghi, R.; Guidetti, R.; Casiraghi, E. NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biol. Technol. 2014, 87, 13–20. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Truppel, I.; Herold, B. An approach to non-destructive apple fruit chlorophyll determination. Postharvest Biol. Technol. 2002, 25, 123–133. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Shariati, A.; Toghroli, A.; Trung, N.T.; Salih, M.N.A. A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Eng. Comput. 2020, 37, 2089–2109. [Google Scholar] [CrossRef]
- Mammoliti, E.; Di Stefano, F.; Fronzi, D.; Mancini, A.; Malinverni, E.S.; Tazioli, A. A Machine learning approach to extract rock mass discontinuity orientation and spacing, from laser scanner point clouds. Remote Sens. 2022, 14, 2365. [Google Scholar] [CrossRef]
- Junior, F.M.R.; Bianchi, R.A.; Prati, R.C.; Kolehmainen, K.; Soininen, J.-P.; Kamienski, C.A. Data reduction based on machine learning algorithms for fog computing in IoT smart agriculture. Biosyst. Eng. 2022, 220. [Google Scholar] [CrossRef]
- Melo, B.H.D.S.; Sales, R.F.; Filho, L.D.S.B.; da Silva, J.S.P.; Sousa, A.G.C.D.A.; Peixoto, D.M.C.; Pimentel, M.F. Handheld near infrared spectrometer and machine learning methods applied to the monitoring of multiple process stages in industrial sugar production. Food Chem. 2021, 369, 130919. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Zhai, G. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors 2018, 18, 1126. [Google Scholar] [CrossRef] [Green Version]
- Munera, S.; Blasco, J.; Amigo, J.M.; Cubero, S.; Talens, P.; Aleixos, N. Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines. Biosyst. Eng. 2019, 182, 54–64. [Google Scholar] [CrossRef]
- Zhaoyong, Z.; Lei, Y.; Su, D.; Zhang, H.; He, D.; Chenghai, Y. Detection of moldy core in apples and Its symptom types USING transmittance spectroscopy. Int. J. Agric. Biol. Eng. 2016, 9, 148–155. [Google Scholar]
- Shenderey, C.; Shmulevich, I.; Alchanatis, V.; Egozi, H.; Hoffman, A.; Ostrovsky, V.; Lurie, S.; Ben Arie, R.; Schmilovitch, Z. NIRS detection of MOLDY core in apples. Food Bioprocess Technol. 2009, 3, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Wang, Q.; Huang, W.; Fan, S.; Li, J. Online detection of apples with moldy core using the Vis/NIR full-transmittance spectra. Postharvest Biol. Technol. 2020, 168, 111269. [Google Scholar] [CrossRef]
- Jacquez, J.A.; Kuppenheim, H.F. Theory of the integrating sphere. J. Opt. Soc. Am. 1955, 45, 460–466. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1–11. [Google Scholar] [CrossRef]
- Marom, N.D.; Rokach, L.; Shmilovici, A. Using the confusion matrix for improving ensemble classifiers. In Proceedings of the 2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, 17–20 November 2010; pp. 000555–000559. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gulzat, T.; Lyazat, N.; Siladi, V.; Gulbakyt, S.; Maksatbek, S. Research on predictive model based on classification with parameters of optimization. Neural Netw. World 2020, 30, 295–308. [Google Scholar] [CrossRef]
- Omar, N.; Jusoh, F.B.; Binti, R.; Othman, M.S. Review of feature selection for solving classification problems. J. Res. Innov. Inf. Syst. 2013, 7, 64–70. [Google Scholar]
- Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Cho, B.-K.; Kim, M.S.; Baek, I.; Kim, D.-Y.; Lee, W.-H.; Kim, J.; Bae, H.; Kim, Y.-S. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol. Technol. 2013, 76, 40–49. [Google Scholar] [CrossRef]
- Brownlee, J. How to Perform Feature Selection with Numerical Input Data. Available online: https://machinelearningmastery.com/feature-selection-with-numerical-input-data/ (accessed on 7 January 2022).
- Rukhaiyar, S.; Samadhiya, N. A polyaxial strength model for intact sandstone based on artificial neural network. Int. J. Rock Mech. Min. Sci. 2017, 95, 26–47. [Google Scholar] [CrossRef]
- Scales, L.E. Introduction to Non-Linear Optimization. Macmillan International Higher Education. 1985. Available online: https://books.google.com/books?hl=it&lr=&id=AEJdDwAAQBAJ&oi=fnd&pg=PR9&dq=Scales,+L.+E.+%E2%80%98Introduction+to+Non-Linear+Optimization%E2%80%99.+Macmillan+International+Higher+Education&ots=fR1BoRYYT6&sig=ZMFrOS9ZZ4a1Tx7BiuqMFeFgzFo (accessed on 25 January 2022).
- Phansalkar, V.; Sastry, P. Analysis of the back-propagation algorithm with momentum. IEEE Trans. Neural Netw. 1994, 5, 505–506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, R.L.; et al. Advanced methods of plant disease detection: A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.-Y.; Feng, Y.-Z.; Sun, D.-W. Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef]
- Shihab, T.; Al-Hameedawi, A.; Hamza, A. Random forest (RF) and artificial neural network (ANN) algorithms for LULC mapping. Eng. Technol. J. 2020, 38, 510–514. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E. 20—Connectionist learning proceduresthis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Trinci, A.P.J. Exponential growth of the germ tubes of fungal spores. J. Gen. Microbiol. 1971, 67, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Raúl, R. The backpropagation algorithm. In Neural Networks: A Systematic Introduction; Rojas, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 149–182. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbedo, J.G.A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput. Electron. Agric. 2018, 153, 46–53. [Google Scholar] [CrossRef]
Days | Round | Operations |
---|---|---|
2 April 2021 | 1 | Biometrical measurement, inoculation, and spectral acquisition |
5 April 2021 | 2 | Spectral acquisition |
8 April 2021 | 3 | Spectral acquisition |
11 April 2021 | 4 | Spectral acquisition |
14 April 2021 | 5 | Spectral acquisition, biometrical measurement, MC presence validation, and RGB acquisition |
Model | Accuracy | Precision | Recall |
---|---|---|---|
BC | 0.95 | 0.85 | 0.88 |
ANN-AP | 0.72 | 0.89 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genangeli, A.; Allasia, G.; Bindi, M.; Cantini, C.; Cavaliere, A.; Genesio, L.; Giannotta, G.; Miglietta, F.; Gioli, B. A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits. Sensors 2022, 22, 4479. https://doi.org/10.3390/s22124479
Genangeli A, Allasia G, Bindi M, Cantini C, Cavaliere A, Genesio L, Giannotta G, Miglietta F, Gioli B. A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits. Sensors. 2022; 22(12):4479. https://doi.org/10.3390/s22124479
Chicago/Turabian StyleGenangeli, Andrea, Giorgio Allasia, Marco Bindi, Claudio Cantini, Alice Cavaliere, Lorenzo Genesio, Giovanni Giannotta, Franco Miglietta, and Beniamino Gioli. 2022. "A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits" Sensors 22, no. 12: 4479. https://doi.org/10.3390/s22124479
APA StyleGenangeli, A., Allasia, G., Bindi, M., Cantini, C., Cavaliere, A., Genesio, L., Giannotta, G., Miglietta, F., & Gioli, B. (2022). A Novel Hyperspectral Method to Detect Moldy Core in Apple Fruits. Sensors, 22(12), 4479. https://doi.org/10.3390/s22124479