Feature Refine Network for Salient Object Detection
Abstract
:1. Introduction
- We introduce an scSE module for pre-processing the outputs at five scales of the backbone. The scSE consists of channel and spatial attention. It improves the representation ability of the features at each scale and enhances the effectiveness of the residual learning strategy.
- We propose an AFFM module that enables the overall fusion of multi-scale information to compose the final saliency prediction. AFFM combines two kinds of multi-scale feature fusion strategies to improve saliency detection performance.
- A hybrid loss is proposed for supervision during five scales’ residual learning processes, and for the generation of final saliency maps. It fuses BCE, structural similarity (SSIM) and dice and intersection-over-union (IOU) to train the model in local-level and global-level.
2. Related Work
2.1. Residual Learning
2.2. Multi-Scale Feature Fusion
2.3. Attention Mechanism
2.4. Loss Function
3. Proposed Method
3.1. Overview of FRNet
3.2. Adaptive Feature Fusion Module
3.3. Mixed Channel and Spatial Attention
3.4. The Hybrid Loss
4. Experiments
4.1. Implementation Details
4.1.1. Data Augmentation
4.1.2. Parameter Setting
4.2. Datasets
4.3. Evaluation Metrics
4.3.1. Precision–Recall (PR) Curves
4.3.2. Maximum F-Measure (Max-F)
4.3.3. Structure-Measure (Sm)
4.3.4. Mean Absolute Error (MAE)
4.4. Comparisons with Other Advanced Methods
4.4.1. Visual Comparison
4.4.2. Evaluation of Saliency Map
4.5. Ablation Analysis
4.5.1. The Effectiveness of the Adaptive Feature Fusion Module
4.5.2. The Effectiveness of Hybrid Loss
4.5.3. The Effectiveness of scSE
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Du, B. Saliency-Guided Unsupervised Feature Learning for Scene Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2175–2184. [Google Scholar] [CrossRef]
- Wang, W.G.; Shen, J.B.; Yang, R.G.; Porikli, F. Saliency-Aware Video Object Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Ghosh, J.; Grauman, K. Discovering important people and objects for egocentric video summarization. In Proceedings of the 2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1346–1353. [Google Scholar]
- Liu, H.; Zhang, L.; Huang, H. Web-image driven best views of 3D shapes. Vis. Comput. 2012, 28, 279–287. [Google Scholar] [CrossRef]
- Li, J.; Levine, M.D.; An, X.; Xu, X.; He, H. Visual Saliency Based on Scale-Space Analysis in the Frequency Domain. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 996–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3th International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, R.; Ouyang, W.L.; Li, H.S.; Wang, X.G. Saliency detection by multi-context deep learning. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1265–1274. [Google Scholar]
- Zou, W.B.; Komodakis, N. HARF: Hierarchy-associated rich features for salient object detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 406–414. [Google Scholar]
- Borji, A.; Cheng, M.M.; Hou, Q.B.; Jiang, H.Z.; Li, J. Salient object detection: A survey. Comput. Vis. Media. 2019, 5, 117–150. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zhang, P.P.; Wang, D.; Lu, H.C.; Ruan, X. Amulet: Aggregating multi-level convolutional features for salient object detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 202–211. [Google Scholar]
- Hou, Q.B.; Cheng, M.M.; Hu, X.W.; Borji, A.; Tu, Z.W.; Torr, P.H. Deeply supervised salient object detection with short connections. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5300–5309. [Google Scholar]
- Xie, S.N.; Tu, Z.W. Holistically-nested edge detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Feng, M.Y.; Lu, H.C.; Yu, Y.Z. Residual Learning For Salient Object Detection. IEEE Trans. Image Process. 2020, 29, 4696–4708. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Huang, J.B.; Yang, X.K.; Yang, M.H. Hierarchical convolutional features for visual tracking. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3074–3082. [Google Scholar]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. arXiv 2021, arXiv:2111.07624. [Google Scholar] [CrossRef]
- Deng, Z.J.; Hu, X.W.; Zhu, L.; Xu, X.M.; Qin, J.; Han, G.Q.; Heng, P.A. R3Net: Recurrent residual refinement network for saliency detection. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 684–690. [Google Scholar]
- Li, X.H.; Lu, H.C.; Zhang, L.H.; Ruan, X.; Yang, M.H. Saliency detection via dense and sparse reconstruction. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2976–2983. [Google Scholar]
- Zhang, L.; Dai, J.; Lu, H.C.; He, Y.; Wang, G. A bi-directional message passing model for salient object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1741–1750. [Google Scholar]
- Zhang, P.P.; Wang, D.; Lu, H.C.; Wang, H.Y.; Yin, B.C. Learning uncertain convolutional features for accurate saliency detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 212–221. [Google Scholar]
- Luo, Z.M.; Mishra, A.K.; Achkar, A.; Eichel, J.A.; Li, S.Z.; Jodoin, P.M. Non-local deep features for salient object detection. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6593–6601. [Google Scholar]
- Zhang, P.P.; Liu, W.; Lu, H.C.; Shen, C.H. Salient object detection by lossless feature reflection. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1149–1155. [Google Scholar]
- Wu, R.M.; Feng, M.Y.; Guan, W.L.; Wang, D.; Lu, H.C.; Ding, E. A Mutual learning method for salient object detection with intertwined multi-supervision. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 8150–8159. [Google Scholar]
- Chen, S.H.; Tan, X.L.; Wang, B.; Hu, X.L. Reverse attention for salient object detection. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 236–252. [Google Scholar]
- Wu, Z.; Su, L.; Huang, Q.M. Cascaded partial decoder for fast and accurate salient object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3907–3916. [Google Scholar]
- Liu, N.; Han, J.W.; Yang, M.H. PiCANet: Learning pixel-wise contextual attention for saliency detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3089–3098. [Google Scholar]
- Zhang, X.N.; Wang, T.T.; Qi, J.Q.; Lu, H.C.; Wang, G. Progressive attention guided recurrent network for salient object detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 714–722. [Google Scholar]
- Zeng, Y.; Zhuge, Y.Z.; Lu, H.C.; Zhang, L.H.; Qian, M.Y.; Yu, Y.Z. Multi-source weak supervision for saliency detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 6074–6083. [Google Scholar]
- Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.R.; Hu, S.M. PCT: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.H.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Liu, Z.; Lin, Y.T.; Cao, Y.; Hu, H.; Wei, Y.X.; Zhang, Z.; Lin, S.; Guo, B.N. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Liu, N.; Zhang, N.; Wan, K.Y.; Shao, L.; Han, J.W. Visual saliency transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4702–4712. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 4th International Conference on 3D Vision, Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Qin, X.B.; Zhang, Z.C.; Huang, C.Y.; Gao, C.; Dehghan, M.; Jagersand, M. BASNet: Boundary-aware salient object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 7479–7489. [Google Scholar]
- Roy, A.G.; Navab, N.; Wachinger, C. Recalibrating Fully Convolutional Networks With Spatial And Channel “Squeeze And Excitation” Blocks. IEEE Trans. Med. Imaging 2019, 38, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Xu, L.; Shi, J.P.; Jia, J.Y. Hierarchical saliency detection. In Proceedings of the 2013 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1155–1162. [Google Scholar]
- Li, Y.; Hou, X.D.; Koch, C.; Rehg, J.M.; Yuille, A.L. The secrets of salient object segmentation. In Proceedings of the 2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 280–287. [Google Scholar]
- Yang, C.; Zhang, L.H.; Lu, H.C.; Ruan, X.; Yang, M.H. Saliency detection via graph-based manifold ranking. In Proceedings of the 2013 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3166–3173. [Google Scholar]
- Li, G.B.; Yu, Y.Z. Visual saliency based on multiscale deep features. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5455–5463. [Google Scholar]
- Wang, L.J.; Lu, H.C.; Wang, Y.F.; Feng, M.Y.; Wang, D.; Yin, B.C.; Ruan, X. Learning to detect salient objects with image-level supervision. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3796–3805. [Google Scholar]
- Liu, N.; Han, J.W. DHSNet: Deep hierarchical saliency network for salient object detection. In Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26–30 June 2016; pp. 678–686. [Google Scholar]
- Martin, D.R.; Fowlkes, C.C.; Tal, D.; Malik, J. A Database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the 8th International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–425. [Google Scholar]
- Everingham, M.; Gool, L.V.; Williams, C.K.; Winn, J.M.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Xiao, J.X.; Hays, J.; Ehinger, K.A.; Oliva, A.; Torralba, A. SUN database: Large-scale scene recognition from abbey to zoo. In Proceedings of the 2010 IEEE/CVF conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3485–3492. [Google Scholar]
- Fan, D.P.; Cheng, M.M.; Liu, Y.; Li, T.; Borji, A. Structure-measure: A new way to evaluate foreground maps. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4558–4567. [Google Scholar]
- Wei, J.; Wang, S.H.; Huang, Q.M. F3Net: Fusion, feedback and focus for salient object detection. In Proceedings of the 34th Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 12321–12328. [Google Scholar]
- Chen, Z.Y.; Xu, Q.Q.; Cong, R.M.; Huang, Q.M. Global context-aware progressive aggregation network for salient object detection. In Proceedings of the 34th Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 10599–10606. [Google Scholar]
- Zhou, H.J.; Xie, X.H.; Lai, J.H.; Chen, Z.X.; Yang, L.X. Interactive two-stream decoder for accurate and fast saliency detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9138–9147. [Google Scholar]
- Pang, Y.W.; Zhao, X.Q.; Zhang, L.H.; Lu, H.C. Multi-scale interactive network for salient object detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9410–9419. [Google Scholar]
- Liu, J.J.; Hou, Q.B.; Cheng, M.M.; Feng, J.S.; Jiang, J.M. A Simple pooling-based design for real-time salient object detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3917–3926. [Google Scholar]
- Sun, H.; Cen, J.; Liu, N.Z.; Liang, D.; Zhou, H.Y. MPI: Multi-receptive and parallel integration for salient object detection. IET Image Process. 2021, 15, 3281–3291. [Google Scholar] [CrossRef]
- Yun, Y.K.; Tsubono, T. Recursive contour-saliency blending network for accurate salient object detection. In Proceedings of the 2022 IEEE/CVF Conference on Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 1360–1370. [Google Scholar]
Method | ECSSD | PASCAL-S | DUT-OMRON | DUT-TEST | HKU-IS |
---|---|---|---|---|---|
MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | |
Amulet (17) | 0.0690/0.9150/0.8840 | 0.1000/0.8280/0.8180 | 0.0980/0.7430/0.7810 | 0.0840/0.7780/0.7960 | 0.0510/0.8970/0.8860 |
NLDF (17) | 0.0630/0.9030/0.8750 | 0.0980/0.8220/0.8030 | 0.0790/0.7530/0.7500 | 0.0650/0.8160/0.8050 | 0.0480/0.9020/0.8780 |
PiCANet (18) | 0.0460/0.9310/0.9140 | 0.0770/0.8570/0.8500 | 0.0640/0.8200/0.8080 | 0.0500/0.8630/0.8500 | 0.0440/0.9200/0.9050 |
DSS (19) | 0.0520/0.9160/0.8820 | 0.0960/0.8360/0.7970 | 0.0740/0.7600/0.7650 | 0.0650/0.8130/0.8120 | 0.0500/0.9000/0.8780 |
MLMS (19) | 0.0450/0.9280/0.9110 | 0.0740/0.8550/0.8440 | 0.0640/0.7740/0.8090 | 0.0480/0.8520/0.8510 | 0.0390/0.9210/0.9070 |
CPD (19) | 0.0370/0.9390/0.9180 | 0.0710/0.8610/0.8480 | 0.0560/0.7970/0.8250 | 0.0430/0.8650/0.8580 | 0.0340/0.9250/0.9050 |
PoolNet (19) | 0.0390/0.9440/0.9210 | 0.0750/0.8650/0.8320 | 0.0560/0.8080/0.8360 | 0.0400/0.8800/0.8710 | 0.0330/0.9320/0.9170 |
BASNet (19) | 0.0370/0.9420/0.9160 | 0.0760/0.8540/0.8380 | 0.0560/0.8050/0.8360 | 0.0470/0.8600/0.8530 | 0.0320/0.9280/0.9090 |
GCPA (20) | 0.0350/0.9431/0.9264 | 0.0712/0.8632/0.8561 | 0.0560/0.8223/0.8391 | 0.0364/0.8781/0.8715 | 0.0322/0.9284/0.9144 |
ITSD (20) | 0.0346/0.9393/0.9249 | 0.0712/0.8354/0.8617 | 0.0608/0.7916/0.8404 | 0.0408/0.8669/0.8851 | 0.0307/0.9257/0.9169 |
MINet (20) | 0.0330/0.9440/0.9030 | 0.0780/0.8610/0.8480 | 0.0560/0.8100/0.8220 | 0.0370/0.8840/0.8750 | 0.0330/0.9310/0.9140 |
F3Net (20) | 0.0330/0.9250/0.9240 | 0.0680/0.8400/0.8550 | 0.0530/0.7660/0.8380 | 0.0350/0.8400/0.8751 | 0.0280/0.9100/0.9210 |
MPI (21) | 0.0318/0.9415/0.9252 | 0.0690/0.8381/0.8607 | 0.0560/0.7798/0.8336 | 0.0348/0.8749/0.8891 | 0.0267/0.9317/0.9221 |
RCSB (22) | 0.0335/0.9355/0.9218 | 0.0684/0.8311/0.8597 | 0.0490/0.7729/0.8352 | 0.0329/0.8667/0.8810 | 0.0268/0.9334/0.9188 |
Baseline (R2Net) | 0.0440/0.9350/0.9150 | 0.0750/0.8280/0.8470 | 0.0610/0.7715/0.8240 | 0.0500/0.8582/0.8610 | 0.0390/0.9210/0.9030 |
Ours | 0.0326/0.9457/0.9286 | 0.0671/0.8675/0.8590 | 0.0491/0.8336/0.8473 | 0.0339/0.8812/0.8761 | 0.0273/0.9323/0.9198 |
Method | ECSSD | PASCAL-S | DUT-OMRON | DUT-TEST | HKU-IS |
---|---|---|---|---|---|
MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | |
B | 0.0440/0.9350/0.9150 | 0.0750/0.8280/0.8470 | 0.0610/0.7715/0.8240 | 0.0500/0.8582/0.8610 | 0.0390/0.9210/0.9030 |
B+AFFM | 0.0363/0.9245/0.9093 | 0.0706/0.8269/0.8506 | 0.0498/0.7570/0.8161 | 0.0344/0.8526/0.8695 | 0.0296/0.9136/0.9026 |
B+Loss | 0.0354/0.9295/0.9110 | 0.0690/0.8319/0.8542 | 0.0502/0.7643/0.8192 | 0.0351/0.8539/0.8666 | 0.0294/0.9168/0.9020 |
B+scSE | 0.0356/0.9285/0.9103 | 0.0701/0.8292/0.8503 | 0.0512/0.7655/0.8210 | 0.0347/0.8583/0.8701 | 0.0300/0.9151/0.9015 |
B+scSE+Loss | 0.0327/0.9327/0.9164 | 0.0697/0.8325/0.8528 | 0.0506/0.7710/0.8252 | 0.0345/0.8600/0.8738 | 0.0285/0.9200/0.9068 |
B+Loss+AFFM | 0.0366/0.9286/0.9063 | 0.0691/0.8303/0.8509 | 0.0521/0.7622/0.8128 | 0.0374/0.8455/0.8564 | 0.0318/0.9107/0.8935 |
B+scSE+AFFM | 0.0328/0.9357/0.9174 | 0.0681/0.8325/0.8553 | 0.0506/0.7663/0.8221 | 0.0358/0.8545/0.8695 | 0.0288/0.9191/0.9064 |
B+scSE+Loss+AFFM | 0.0326/0.9367/0.9180 | 0.0671/0.8370/0.8590 | 0.0491/0.7724/0.8279 | 0.0339/0.8624/0.8761 | 0.0273/0.9223/0.9098 |
Method | DUT-OMRON | DUT-TEST | HKU-IS |
---|---|---|---|
MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | |
Baseline (BCE) | 0.0610/0.7755/0.8240 | 0.0500/0.8582/0.8610 | 0.0390/0.9210/0.9030 |
Dice+IOU | 0.0569/0.7554/0.8159 | 0.0418/0.8481/0.8518 | 0.0355/0.9046/0.8980 |
BCE+Dice | 0.0525/0.7561/0.8156 | 0.0359/0.8540/0.8682 | 0.0308/0.9145/0.9027 |
BCE+SSIM | 0.0513/0.7581/0.8160 | 0.0373/0.8436/0.8554 | 0.0330/0.9126/0.8913 |
BCE+SSIM+Dice+IOU | 0.0532/0.7524/0.8079 | 0.0366/0.8385/0.8610 | 0.0334/0.9075/0.8991 |
Method | DUT-OMRON | DUT-TEST | HKU-IS |
---|---|---|---|
MAE/Max-F/Sm | MAE/Max-F/Sm | MAE/Max-F/Sm | |
Baseline (BCE) | 0.0610/0.7755/0.8240 | 0.0500/0.8582/0.8610 | 0.0390/0.9210/0.9030 |
0.0523/0.7520/0.8082 | 0.0380/0.8432/0.8518 | 0.0337/0.9080/0.8908 | |
0.0541/0.7529/0.8084 | 0.0408/0.8322/0.8470 | 0.0346/0.9081/0.8887 | |
0.0538/0.7475/0.8015 | 0.0399/0.8344/0.8430 | 0.0360/0.9048/0.8820 | |
0.0491/0.7724/0.8279 | 0.0339/0.8624/0.8761 | 0.0273/0.9223/0.9098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, L.; Li, Y. Feature Refine Network for Salient Object Detection. Sensors 2022, 22, 4490. https://doi.org/10.3390/s22124490
Yang J, Wang L, Li Y. Feature Refine Network for Salient Object Detection. Sensors. 2022; 22(12):4490. https://doi.org/10.3390/s22124490
Chicago/Turabian StyleYang, Jiejun, Liejun Wang, and Yongming Li. 2022. "Feature Refine Network for Salient Object Detection" Sensors 22, no. 12: 4490. https://doi.org/10.3390/s22124490
APA StyleYang, J., Wang, L., & Li, Y. (2022). Feature Refine Network for Salient Object Detection. Sensors, 22(12), 4490. https://doi.org/10.3390/s22124490