Near Field 3-D Millimeter-Wave SAR Image Enhancement and Detection with Application of Antenna Pattern Compensation
Abstract
:1. Introduction
2. Relevant Research Theories
2.1. Signal Model
2.2. Imaging Algorithm
2.2.1. Range Migration Algorithm with Amplitude Loss Compensation
2.2.2. Back Projection Algorithm
2.2.3. Enhanced Back Projection Algorithm
2.3. YOLO Detection Network
3. Imaging Results and Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheen, D.M.; Hall, T.E.; McMakin, D.L.; Jones, A.M.; Tedeschi, J.R. Three-dimensional radar imaging techniques and systems for near-field applications. In Proceedings of the Radar Sensor Technology XX, Baltimore, MD, USA, 18–21 April 2016; pp. 230–241. [Google Scholar]
- Yanik, M.E.; Torlak, M. Near-Field 2-D SAR Imaging by Millimeter-Wave Radar for Concealed Item Detection. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019. [Google Scholar]
- Yuan, G.; Zoughi, R. Millimeter Wave Reflectometry and Imaging for Noninvasive Diagnosis of Skin Burn Injuries. IEEE Trans. Instrum. Meas. 2016, 66, 77–84. [Google Scholar]
- Chao, L.; Afsar, M.N.; Korolev, K.A. Millimeter wave dielectric spectroscopy and breast cancer imaging. In Proceedings of the Microwave Integrated Circuits Conference (EuMIC), 2012 7th European, Amsterdam, The Netherlands, 29–30 October 2012. [Google Scholar]
- Tokoro, S. Automotive application systems of a millimeter-wave radar. In Proceedings of the Conference on Intelligent Vehicles, Tokyo, Japan, 19–20 September 1996; pp. 51–56. [Google Scholar]
- Song, S.; Xing, S.; Wang, J.; Li, Y.; Pang, B. Validation of near-field millimeter wave radar-based RD and RMA time-frequency domain imaging algorithms. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; pp. 1885–1889. [Google Scholar]
- Sheen, D.M.; Mcmakin, D.L.; Hall, T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 2001, 49, 1581–1592. [Google Scholar] [CrossRef]
- Yegulalp, A.F. Fast backprojection algorithm for synthetic aperture radar. In Proceedings of the IEEE, Waltham, MA, USA, 22 April 1999. [Google Scholar]
- Wang, Z.; Guo, Q.; Tian, X.; Chang, T.; Cui, H.L. Near-Field 3-D Millimeter-Wave Imaging Using MIMO RMA With Range Compensation. IEEE Trans. Microw. Theory Amp. Tech. 2018, 67, 1157–1166. [Google Scholar] [CrossRef]
- Yanik, M.E.; Wang, D.; Torlak, M. 3-D MIMO-SAR Imaging Using Multi-Chip Cascaded Millimeter-Wave Sensors. In Proceedings of the 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Ottawa, ON, Canada, 11–14 November 2019. [Google Scholar]
- Mohammadian, N.; Furxhi, O.; Short, R.E.; Driggers, R. SAR millimeter wave imaging systems. In Proceedings of the Passive and Active Millimeter-Wave Imaging XXII, Baltimore, MD, USA, 13 May 2019. [Google Scholar]
- Yanik, M.E.; Wang, D.; Torlak, M. Development and Demonstration of MIMO-SAR mmWave Imaging Testbeds. IEEE Access 2020, 8, 126019–126038. [Google Scholar] [CrossRef]
- Moll, J.; Schops, P.; Krozer, V. Towards Three-Dimensional Millimeter-Wave Radar With the Bistatic Fast-Factorized Back-Projection Algorithm—Potential and Limitations. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 432–440. [Google Scholar] [CrossRef]
- Lopez-Sahcnez, J.M.; Fortuny-Guasch, J. 3-D radar imaging using range migration techniques. IEEE Trans. Antennas Propagat. 2000, 48, 728–737. [Google Scholar] [CrossRef]
- Tang, K.; Guo, X.; Liang, X.; Lin, Z. Implementation of Real-time Automotive SAR Imaging. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Wang, M.; Wei, S.; Liang, J.; Liu, S.; Shi, J.; Zhang, X. Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–20. [Google Scholar] [CrossRef]
- Zhuge, X. Three-Dimensional Near-Field MIMO Array Imaging Using Range Migration Techniques. IEEE Trans. Image Processing 2012, 21, 3026–3033. [Google Scholar] [CrossRef]
- Gao, J.; Qin, Y.; Deng, B.; Wang, H.; Li, X. Novel Efficient 3D Short-Range Imaging Algorithms for a Scanning 1D-MIMO Array. IEEE Trans. Image Processing 2018, 27, 3631–3643. [Google Scholar] [CrossRef]
- Fan, B.; Gao, J.-K.; Li, H.-J.; Jiang, Z.-J.; He, Y. Near-field 3D SAR imaging using a scanning linear MIMO array with arbitrary topologies. IEEE Access 2019, 8, 6782–6791. [Google Scholar] [CrossRef]
- Wang, J.; Cetinkaya, H.; Yarovoy, A. NUFFT based frequency-wavenumber domain focusing under MIMO array configurations. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 1–5. [Google Scholar]
- Dandes, E.J. Near-optimal signal recovery from random projections. Univers. Encoding Strateg. IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar]
- Baraniuk, R.G. Compressive Sensing [Lecture Notes]. IEEE Signal Processing Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, G.; Jin, T. Novel methods to accelerate CS radar imaging by NUFFT. IEEE Trans. Geosci. Remote Sens. 2014, 53, 557–566. [Google Scholar]
- Kajbaf, H. Compressive Sensing for 3D Microwave Imaging Systems; Missouri University of Science and Technology: Rolla, MO, USA, 2012. [Google Scholar]
- Li, J.; Stoica, P. MIMO Radar Signal Processing || Concepts and Applications of a MIMO Radar System with Widely Separated Antennas; Wiley-IEEE Press: Hoboken, NJ, USA, 2008; pp. 365–410. [Google Scholar] [CrossRef]
- Bliss, D.W.; Forsythe, K.W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution. In Proceedings of the Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003. [Google Scholar]
- Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. An Efficient Algorithm for MIMO Cylindrical Millimeter-Wave Holographic 3-D Imaging. IEEE Trans. Microw. Theory Tech. 2018, 66, 5065–5074. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, Y.; Yang, Q.; Deng, B.; Wang, H. An Active Millimeter-Wave Imager Based on MIMO-SAR Scheme. J. Infrared Millim. Terahertz Waves 2021, 42, 1027–1039. [Google Scholar] [CrossRef]
- Smith, J.W.; Yanik, M.E.; Torlak, M. Near-Field MIMO-ISAR Millimeter-Wave Imaging. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020. [Google Scholar]
- Yanik, M.E.; Torlak, M. Near-Field MIMO-SAR Millimeter-Wave Imaging with Sparsely Sampled Aperture Data. IEEE Access 2019, 7, 31801–31819. [Google Scholar] [CrossRef]
- Wang, J.; Aubry, P.; Yarovoy, A. 3-D Short-Range Imaging With Irregular MIMO Arrays Using NUFFT-Based Range Migration Algorithm. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4730–4742. [Google Scholar] [CrossRef]
- Smith, J.W.; Torlak, M. Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning Geometries. IEEE Access 2022, 10, 10283–10294. [Google Scholar] [CrossRef]
- Ren, Z.; Boybay, M.S.; Ramahi, O.M. Near-Field Probes for Subsurface Detection Using Split-Ring Resonators. IEEE Trans. Microw. Theory Tech. 2011, 59, 488–495. [Google Scholar] [CrossRef]
- Hao, J.; Li, J.; Pi, Y. Three-dimensional imaging of terahertz circular SAR with sparse linear array. Sensors 2018, 18, 2477. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Zhou, Z.; Wang, M.; Wei, J.; Liu, S.; Shi, J.; Zhang, X.; Fan, F. 3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation. Remote Sens. 2021, 13, 3366. [Google Scholar] [CrossRef]
- Meta, A.; Hoogeboom, P.; Ligthart, P.L. Signal Processing for FMCW SAR. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3519–3532. [Google Scholar] [CrossRef]
- Yanik, M.E. Millimeter-Wave Imaging Using MIMO-SAR Techniques; The University of Texas at Dallas: Richardson, TX, USA, 2020. [Google Scholar]
- Wang, G.; Munoz-Ferreras, J.-M.; Gu, C.; Li, C.; Gomez-Garcia, R. Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs. IEEE Trans. Microw. Theory Tech. 2014, 62, 1387–1399. [Google Scholar] [CrossRef]
- Brekhovskikh, L.M.; Godin, O.A. Springer series on wave phenomena, 10. In Acoustics of Layered Media II: Point Sources and Bounded Beams, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Weyl, H. Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter. Ann. Phys. 2006, 365, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Moulder, W.F.; Krieger, J.D.; Majewski, J.J.; Coldwell, C.M.; Herd, J.S. Development of a high-throughput microwave imaging system for concealed weapons detection. In Proceedings of the IEEE International Symposium on Phased Array Systems & Technology, Waltham, MA, USA, 18–21 October 2017. [Google Scholar]
- Miller, R. Fundamentals of Radar Signal Processing (Richards, M.A.; 2005) [Book review]. Signal Processing Mag. IEEE 2009, 26, 100–101. [Google Scholar] [CrossRef]
- Zhu, R.; Zhou, J.; Jiang, G.; Fu, Q. Range migration algorithm for near-field MIMO-SAR imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2280–2284. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhang, S.; Liu, Y.; Li, X. Fast Entropy Minimization Based Autofocusing Technique for ISAR Imaging. Signal Processing IEEE Trans. 2015, 63, 3425–3434. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
Parameter Type | Numerical Value | Unit |
---|---|---|
Centre Carrier Frequency | 79 | GHz |
Platform Speed | 20 | mm/s |
Pulse Repetition Period | 25 | ms |
Bandwidth | 4 | GHz |
Range Resolution | 3.75 | cm |
Azimuth resolution | 0.5 | mm |
Height resolution | 0.5 | mm |
Azimuth to Sub-aperture spacing | 0.5 | mm |
Scissor Height to sub-aperture spacing | 1 | mm |
Wrench Height to sub-aperture spacing | 2 | mm |
Scissor Synthetic Aperture Size | 200 × 200 | mm2 |
Wrench Synthetic Aperture Size | 300 × 300 | mm2 |
Vertical Distance between Scissor and Radar | 280 | mm |
Vertical Distance between Wrench and Radar | 300 | mm |
Evaluation Systems | Enhanced BPA | BPA | Amplitude Compensation-RMA |
---|---|---|---|
134.5673 | 89.5611 | 112.6986 | |
3.8054 | 4.2688 | 3.8837 | |
220.877 | 188.3848 | 191.0390 | |
3.7456 | 3.8230 | 3.8499 |
Kappa Coefficients | Enhancement-BPA | BPA | Amplitude Compensation-RMA |
---|---|---|---|
0.92 | 0.87 | 0.85 | |
0.93 | 0.92 | 0.91 | |
0.95 | 0.86 | 0.89 | |
0.93 | 0.87 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Lu, J.; Xing, S.; Quan, S.; Wang, J.; Li, Y.; Lian, J. Near Field 3-D Millimeter-Wave SAR Image Enhancement and Detection with Application of Antenna Pattern Compensation. Sensors 2022, 22, 4509. https://doi.org/10.3390/s22124509
Song S, Lu J, Xing S, Quan S, Wang J, Li Y, Lian J. Near Field 3-D Millimeter-Wave SAR Image Enhancement and Detection with Application of Antenna Pattern Compensation. Sensors. 2022; 22(12):4509. https://doi.org/10.3390/s22124509
Chicago/Turabian StyleSong, Shaoqiu, Jie Lu, Shiqi Xing, Sinong Quan, Junpeng Wang, Yongzhen Li, and Jing Lian. 2022. "Near Field 3-D Millimeter-Wave SAR Image Enhancement and Detection with Application of Antenna Pattern Compensation" Sensors 22, no. 12: 4509. https://doi.org/10.3390/s22124509
APA StyleSong, S., Lu, J., Xing, S., Quan, S., Wang, J., Li, Y., & Lian, J. (2022). Near Field 3-D Millimeter-Wave SAR Image Enhancement and Detection with Application of Antenna Pattern Compensation. Sensors, 22(12), 4509. https://doi.org/10.3390/s22124509