Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Soil Sampling
2.2. Fluorescence Sensor
2.3. Data Acquisition
2.4. Statistical Analysis
2.4.1. Estimation of Soil Properties with Random Forest Regression (RFR)
2.4.2. Predicting Fertility Classes
2.4.3. Predicting Nitrogen Rate Recommendation
3. Results and Discussion
3.1. Statistical Description of Soil Properties
3.2. Fluorescence Features to Estimate Soil Parameter Using RFR
3.3. Estimating Soil Parameters Using Induced Fluorescence
3.4. Estimating Fertility Classes of Selected Soil Properties Using UV-Induced Fluorescence
3.5. Estimating N fertilization Recommendation Directly Using UV-induced Fluorescence
3.6. General Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, R.B.; Gotway, C.A.; Hergert, G.W.; Peterson, T.A. Soil Sampling for Site-Specific Nitrogen Management. In Proceedings of the Third International Conference on Precision Agriculture; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1996; pp. 13–22. [Google Scholar] [CrossRef]
- Nolin, M.C.; Guertin, S.P.; Wang, C. Within-Field Spatial Variability of Soil Nutrients and Corn Yield in a Montreal Lowlands Clay Soil. In Proceedings of the Third International Conference on Precision Agriculture; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1996; pp. 257–270. [Google Scholar]
- Adamchuk, V.I.; Rossel, R.A.V. Development of On-the-Go Proximal Soil Sensor Systems. In Proximal Soil Sensing. Progress in Soil Science; Viscarra Rossel, R., McBratney, A., Minasny, B., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 15–28. [Google Scholar] [CrossRef]
- Munsell, C. Munsell Soil Color Charts, Munsell Color; Macbecth Division of Kollmorgen Corporation: Baltimore, MD, USA, 1950. [Google Scholar]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-Go Soil Sensors for Precision Agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, B.; Viscarra Rossel, R.A. Diffuse Reflectance Spectroscopy for High-Resolution Soil Sensing. In Proximal Soil Sensing; Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 29–47. ISBN 978-90-481-8858-1. [Google Scholar]
- Rinnan, R.; Rinnan, Å. Application of near Infrared Reflectance (NIR) and Fluorescence Spectroscopy to Analysis of Microbiological and Chemical Properties of Arctic Soil. Soil Biol. Biochem. 2007, 39, 1664–1673. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing Soils Using a Portable X-ray Fluorescence Spectrometer: 1. Soil Texture. Geoderma 2011, 167, 167–177. [Google Scholar] [CrossRef]
- Barnes, E.M.; Sudduth, K.A.; Hummel, J.W.; Lesch, S.M.; Corwin, D.L.; Yang, G.; Doughtry, C.S.T.; Bausch, W.C. Remote-and Ground-Based Sensor Techniques to Map Soil Properties. Photogramm. Eng. Remote Sens. 2003, 69, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Weindorf, D.C.; Zhu, Y.; McDaniel, P.; Valerio, M.; Lynn, L.; Michaelson, G.; Clark, M.; Ping, C.L. Characterizing Soils via Portable X-Ray Fluorescence Spectrometer: 2. Spodic and Albic Horizons. Geoderma 2012, 189, 268–277. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Man, T.; Aldabaa, A.A.A.; Chakraborty, S. Characterizing Soils via Portable X-Ray Fluorescence Spectrometer: 3. Soil Reaction (PH). Geoderma 2014, 232, 141–147. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Wang, D.; Chakraborty, S. Characterizing Soils via Portable X-Ray Fluorescence Spectrometer: 4. Cation Exchange Capacity (CEC). Geoderma 2015, 239, 130–134. [Google Scholar] [CrossRef]
- Vaudour, E.; Cerovic, Z.G.; Ebengo, D.M.; Latouche, G. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem. Sensors 2018, 18, 1157. [Google Scholar] [CrossRef] [Green Version]
- Herman, B.; Frohlich, V.C.; Lakowicz, J.R.; Murphy, D.B.; Spring, K.R.; Davidson, M.W. Basic Concepts in Fluorescence. Microscopy Resource Center Olympus. 2003. Available online: https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fluorescenceintro/ (accessed on 17 June 2022).
- Ma, X.; Green, S.A. Fractionation and Spectroscopic Properties of Fulvic Acid and Its Extract. Chemosphere 2008, 72, 1425–1434. [Google Scholar] [CrossRef]
- Martins, T.; Saab, S.C.; Milori, D.M.B.P.; Brinatti, A.M.; Rosa, J.A.; Cassaro, F.A.M.; Pires, L.F. Soil Organic Matter Humification under Different Tillage Managements Evaluated by Laser Induced Fluorescence (LIF) and C/N Ratio. Soil Tillage Res. 2011, 111, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Milori, D.M.B.P.; Galeti, H.V.A.; Martin-Neto, L.; Dieckow, J.; González-Pérez, M.; Bayer, C.; Salton, J. Organic Matter Study of Whole Soil Samples Using Laser-Induced Fluorescence Spectroscopy. Soil Sci. Soc. Am. J. 2006, 70, 57–63. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C. Determination of Soil Calcium Using Field Portable X-Ray Fluorescence. Soil Sci. 2009, 174, 151–155. [Google Scholar] [CrossRef]
- Ghozlen, N.B.; Cerovic, Z.G.; Germain, C.; Toutain, S.; Latouche, G. Non-Destructive Optical Monitoring of Grape Maturation by Proximal Sensing. Sensors 2010, 10, 10040–10068. [Google Scholar] [CrossRef]
- Ben Abdallah, F.; Philippe, W.; Goffart, J.P. Comparison of Optical Indicators for Potato Crop Nitrogen Status Assessment Including Novel Approaches Based on Leaf Fluorescence and Flavonoid Content. J. Plant Nutr. 2018, 41, 2705–2728. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sens. 2019, 11, 1847. [Google Scholar] [CrossRef] [Green Version]
- Longchamps, L.; Khosla, R. Early Detection of Nitrogen Variability in Maize Using Fluorescence. Agron. J. 2014, 106, 511–518. [Google Scholar] [CrossRef]
- Siqueira, R.; Longchamps, L.; Dahal, S.; Khosla, R. Use of Fluorescence Sensing to Detect Nitrogen and Potassium Variability in Maize. Remote Sens. 2020, 12, 1752. [Google Scholar] [CrossRef]
- Leufen, G.; Noga, G.; Hunsche, M. Fluorescence Indices for the Proximal Sensing of Powdery Mildew, Nitrogen Supply and Water Deficit in Sugar Beet Leaves. Agriculture 2014, 4, 58–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zia, S.; Owusu-Adu, S.; Gerhards, R.; Müller, J. Early Detection of Fungal Diseases in Winter Wheat by Multi-Optical Sensors. APCBEE Procedia 2014, 8, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Noble, E.; Kumar, S.; Görlitz, F.G.; Stain, C.; Dunsby, C.; French, P.M.W. In Vivo Label-Free Mapping of the Effect of a Photosystem II Inhibiting Herbicide in Plants Using Chlorophyll Fluorescence Lifetime. Plant Methods 2017, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, Y.; Nakashima, S.; Moriizumi, M.; Oguchi, M.; Kashiwagi, S.; Naka, N. Three Dimensional Excitation-Emission Matrix Fluorescence Spectroscopy of Typical Japanese Soil Powders. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118188. [Google Scholar] [CrossRef]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Characterization, Differentiation, and Classification of Humic Substances by Fluorescence Spectroscopy. Soil Sci. 1991, 152, 259–271. [Google Scholar] [CrossRef]
- Miano, T.M.; Senesi, N. Synchronous Excitation Fluorescence Spectroscopy Applied to Soil Humic Substances Chemistry. Sci. Total Environ. 1992, 117–118, 41–51. [Google Scholar] [CrossRef]
- Del Vecchio, R.; Blough, N.V. On the Origin of the Optical Properties of Humic Substances. Environ. Sci. Technol. 2004, 38, 3885–3891. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; González-Gaitano, G.; García-Mina, J.M. The Usefulness of UV–Visible and Fluorescence Spectroscopies to Study the Chemical Nature of Humic Substances from Soils and Composts. Org. Geochem. 2006, 37, 1949–1959. [Google Scholar] [CrossRef]
- Magdoff, F.; Tabatabai, M.A.; Hanlon, E.A. Soil Organic Matter: Analysis and Interpretation. In Proceedings of the Symposium Sponsored by Divisions S-4 and S-8 of the Soil Science Society of America in Seattle, Washington, DC, USA, 14 November 1994. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. In Methods of soil analysis. Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy and Soil Science Society of America Publisher: Madison, WI, USA, 1983; pp. 643–698. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Warncke, D.; Brown, J.R. Potassium and Other Basic Cations. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J.R., Ed.; NCR Publication No. 221; Missouri Agricultural Experiment Station: Columbia, MO, USA, 1998; pp. 31–33. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- United States Department of Agriculture Soil Consercation Service; Colorado Agricultural Experiment Station. Soil Survey Staff Soil Survey of Logan County, Colorado; USDA Cooperative Soil Survey U.S. Government Printing Office: Washington, DC, USA, 1977. [Google Scholar]
- United States Department of Agriculture Soil Consercation Service; Colorado Agricultural Experiment Station. Soil Survey Staff Soil Survey of Larimer County, Colorado; USDA Cooperative Soil Survey U.S. Government Printing Office: Washington, DC, USA, 1980. [Google Scholar]
- Cerovic, Z.G.; Goutouly, J.P.; Hilbert, G.; Destrac-Irvine, A.; Martinon, V.; Moise, N. Mapping Winegrape Quality Attributes Using Portable Fluorescence-Based Sensors. In FRUTIC 09; Best, S., Ed.; Conception, Chile; Propag INIA: Chilian, Chile, 2009; pp. 301–310. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; Version R 3.3.0; The R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Liu, X.; Guanter, L.; Liu, L.; Damm, A.; Malenovský, Z.; Rascher, U.; Peng, D.; Du, S.; Gastellu-Etchegorry, J.-P. Downscaling of Solar-Induced Chlorophyll Fluorescence from Canopy Level to Photosystem Level Using a Random Forest Model. Remote Sens. Environ. 2019, 231, 110772. [Google Scholar] [CrossRef]
- Peng, J.; Manevski, K.; Kørup, K.; Larsen, R.; Andersen, M.N. Random Forest Regression Results in Accurate Assessment of Potato Nitrogen Status Based on Multispectral Data from Different Platforms and the Critical Concentration Approach. Field Crop. Res. 2021, 268, 108158. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping Stocks of Soil Total Nitrogen Using Remote Sensing Data: A Comparison of Random Forest Models with Different Predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Davis, J.G.; Westfall, D.G. Fertilizing Corn-0.538. Available online: https://extension.colostate.edu/topic-areas/agriculture/fertilizing-corn-0-538/ (accessed on 13 December 2021).
- Bauder, T.A.; Waskom, R.M.T.; Schneekloth, J.P.; Alldredge, J. Best Management Practices for Colorado Corn; Colorado State University Cooperative Extension: Fort Collins, CO, USA, 2003. [Google Scholar]
- Self, J.R. Soil Test Explanation—0.502. 2010. Available online: https://extension.colostate.edu/topic-areas/agriculture/soil-test-explanation-0-502/ (accessed on 20 December 2021).
- Ripley, B.D. R Package Tree, Version 1.0−2; The R Foundation for Statistical Computing: Vienna, Austria, 2006; Available online: http://CRAN.R-project.org/package=tree (accessed on 13 December 2021).
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Davis, J.G.; Westfall, D.G. Fertilizing Corn; Colorado State University Extension: Fort Collins, CO, USA, 2009. [Google Scholar]
- Velasco, M.I.; Campitelli, P.A.; Ceppi, S.B.; Havel, J. Analysis of Humic Acid from Compost of Urban Wastes and Soil by Fluorescence Spectroscopy. Agriscientia 2004, 21, 31–38. [Google Scholar]
- Nicolodelli, G.; Tadini, A.M.; Nogueira, M.S.; Pratavieira, S.; Mounier, S.; Huaman, J.L.C.; dos Santos, C.H.; Montes, C.R.; Milori, D.M.B.P. Fluorescence Lifetime Evaluation of Whole Soils from the Amazon Rainforest. Appl. Opt. AO 2017, 56, 6936–6941. [Google Scholar] [CrossRef]
- Ammari, F.; Bendoula, R.; Bouveresse, D.J.-R.; Rutledge, D.N.; Roger, J.-M. 3D Front Face Solid-Phase Fluorescence Spectroscopy Combined with Independent Components Analysis to Characterize Organic Matter in Model Soils. Talanta 2014, 125, 146–152. [Google Scholar] [CrossRef]
- González-Pérez, M.; Milori, D.M.B.P.; Colnago, L.A.; Martin-Neto, L.; Melo, W.J. A Laser-Induced Fluorescence Spectroscopic Study of Organic Matter in a Brazilian Oxisol under Different Tillage Systems. Geoderma 2007, 138, 20–24. [Google Scholar] [CrossRef]
- Ross, D.S.; Ketterings, Q. Recommended Methods for Determining Soil Cation Exchange Capacity. Recomm. Soil Test. Proced. Northeast. U.S. 2011, 493, 62. [Google Scholar]
- Ml., J.T.; Chambers, O. Machine Learning Strategy for Soil Nutrients Prediction Using Spectroscopic Method. Sensors 2021, 21, 4208. [Google Scholar] [CrossRef]
- Feeny, A.K.; Chung, M.K.; Madabhushi, A.; Attia, Z.I.; Cikes, M.; Firouznia, M.; Friedman, P.A.; Kalscheur, M.M.; Kapa, S.; Narayan, S.M.; et al. Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circ. Arrhythmia Electrophysiol. 2020, 13, e007952. [Google Scholar] [CrossRef]
- Merali, Z.G.; Witiw, C.D.; Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Using a Machine Learning Approach to Predict Outcome after Surgery for Degenerative Cervical Myelopathy. PLoS ONE 2019, 14, e0215133. [Google Scholar] [CrossRef]
- Pham, H.T. Generalized Weighting for Bagged Ensemblesbles. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Andrade, R.; Faria, W.M.; Silva, S.H.G.; Chakraborty, S.; Weindorf, D.C.; Mesquita, L.F.; Guilherme, L.R.G.; Curi, N. Prediction of Soil Fertility via Portable X-Ray Fluorescence (PXRF) Spectrometry and Soil Texture in the Brazilian Coastal Plains. Geoderma 2020, 357, 113960. [Google Scholar] [CrossRef]
- Sahraoui, H.; Hachicha, M. Effect of Soil Moisture on Trace Elements Concentrations Using Portable X-Ray Fluorescence Spectrometer. J. Fundam. Appl. Sci. 2017, 9, 468–484. [Google Scholar] [CrossRef] [Green Version]
- Fry, E.S. Visible and Near-Ultraviolet Absorption Spectrum of Liquid Water: Comment. Appl. Opt. AO 2000, 39, 2743–2744. [Google Scholar] [CrossRef] [PubMed]
Site | Location (Lat. Lon.) | Sample Size | Soil Series † |
---|---|---|---|
Site 1 | Wellington, CO (40°40′ N, 104°59′ W) | 60 | Kim loam (Fine-loamy, mixed, active, calcareous, mesic Ustic Torriorthents) |
22 | Nunn clay loam (Fine, smectitic, mesic Aridic Argiustolls) | ||
Site 2 | Atwood, CO (40°33′ N, 103°16′ W) | 10 | Nunn clay loam (Fine, smectitic, mesic Aridic Argiustolls) |
2 | Haverson loam (Fine-loamy, mixed, superactive, calcareous, mesic Aridic Ustifluvents) | ||
Site 3 | Ault, CO (40°34′ N, 104°43′ W) | 12 | Kim loam (Fine-loamy, mixed, active, calcareous, mesic Ustic Torriorthents) |
Site 4 | Iliff, CO (40°46′ N, 103°02′ W) | 8 | Loveland clay loam (Fine-loamy over sandy or sandy-skeletal, mixed, superactive, calcareous, mesic Fluvaquentic Endoaquolls) |
6 | Nunn clay loam (Fine, smectitic, mesic Aridic Argiustolls) | ||
Site 5 | Fort Collins, CO (40°36′ N, 104°59′ W) | 6 | Nunn clay loam (Fine, smectitic, mesic Aridic Argiustolls) |
4 | Santana loam (Loamy, mixed, superactive, mesic Aridic Lithic Haplustolls) | ||
Site 6 | Severance, CO (40°31′ N, 104°52′ W) | 10 | Kim loam (Fine-loamy, mixed, active, calcareous, mesic Ustic Torriorthents) |
Site 7 | Lucerne, CO (40°28′ N, 104°41′ W) | 5 | Colby loam (Fine-silty, mixed, superactive, calcareous, mesic Aridic Ustorthent) |
4 | Weld loam (Fine-silty, mixed, mesic, Aridic Argiustoll) | ||
1 | Ascalon loam (Fine-loamy, mixed, mesic, Aridic Argiustoll) | ||
Site 8 | LaSalle, CO (40°17′ N, 104°39′ W) | 5 | Olney fine sandy loam (Fine-loamy, mixed Ustolic Haplargids) |
6 | Otero sandy loam (Coarse-loamy, mixed (calcareous), mesic Ustic Torriorthents) | ||
Site 9 | Pierce, CO (40°36′ N, 104°42′ W) | 5 | Docono clay loam (Clayey over sandy or sandy-skeletal, smectitic, mesic Aridic Argiustolls) |
2 | Nunn clay loam (Fine, smectitic, mesic Aridic Argiustolls) |
Detection Channel | Induction Channel | ||||
UV | Red (R) | Green (G) | Blue (B) | ||
Yellow (YF) | YFUV | YFR | YFG | YFB | |
Red (RF) | RFUV | RFR | RFG | RFB | |
Far-red (FRF) | FRFUV | FRFR | FRFG | FRFB |
Parameter | Description | Formula * |
---|---|---|
SFR_G | Chlorophyll index with green induction | |
SFR_R | Chlorophyll index with red induction | |
FLAV | Index of compounds which absorbs at 375 nm, often flavonoids | |
FER_RG | Chlorophyll ratio originally designed for fruit anthocyanin content | |
FERARI | Index of anthocyanins on grapes | |
ANTH_RG | Index of anthocyanin with green induced denominator | |
ANTH_RB | Index of anthocyanin with blue induced denominator | |
NBI_R | Nitrogen balance index (red) | |
NBI_G | Nitrogen balance index (green) | |
NBI_Rm ** | Ratio of UV induced far-red fluorescence on red light induced red fluorescence | |
NBI_Gm ** | Ratio of UV induced far-red fluorescence on green light induced red fluorescence | |
NBI_Bm ** | Ratio of UV induced far-red fluorescence on blue light induced red fluorescence | |
NBI_UVm ** | Ratio of UV induced far-red fluorescence on UV induced red fluorescence |
Soil Property | Soil Fertility Level | ||||
---|---|---|---|---|---|
Very Low | Low | Medium | High | Very High | |
NO3-N (ppm) | 0–6 | 7–12 | 13–18 | 19–24 | >24 |
SOM (%) | - | 0–1.0 | 1.1–2.0 | >2.0 | - |
P (ppm) † | - | 0–10 | 11–31 | 31–56 | >56 |
K (ppm) | - | 0–60 | 61–120 | >120 | - |
Zn (ppm) | - | 0–0.9 | 1.0–1.5 | >1.5 | - |
S (ppm) | - | 0–6 | 6–8 | >8 | - |
Fe (ppm) ‡ | - | 0–3 | 3–5 | >5 | - |
Salts ‡ | - | 0–2 | 2–4 | 4–8 | >8 |
Mn (ppm) ‡ | - | 0–0.5 | >0.5 | - | - |
Cu (ppm) ‡ | - | 0–0.2 | >0.2 | - | - |
NO3-N (mg/kg) * | Soil Organic Matter (%) | ||
---|---|---|---|
0–1.0 | 1.1–2.0 | >2.0 | |
0–6 | 235 | 207 | 185 |
7–12 | 179 | 151 | 129 |
13–18 | 123 | 95 | 73 |
19–24 | 67 | 39 | 17 |
>24 | 11 | 0 | 0 |
Mean | Min. | Max. | Standard Deviation | Kurtosis | Skewness | |
---|---|---|---|---|---|---|
pH | 8.09 | 7.10 | 8.40 | 0.24 | 3.31 | −1.63 |
Salts | 0.66 | 0.23 | 2.28 | 0.39 | 3.18 | 1.90 |
SOM † (%) | 1.43 | 0.40 | 2.60 | 0.45 | −0.05 | 0.43 |
NO3-N (mg/kg) | 15 | 1 | 100 | 16 | 9.46 | 2.76 |
P (mg/kg) | 59 | 3 | 284 | 49 | 6.13 | 2.13 |
K (mg/kg) | 317 | 147 | 815 | 129 | 2.13 | 1.39 |
S (mg/kg) | 97 | 7 | 709 | 124 | 7.64 | 2.64 |
Ca (mg/kg) | 4113 | 1188 | 5322 | 950 | 1.68 | −1.58 |
Mg (mg/kg) | 594 | 167 | 931 | 125 | 2.34 | −1.24 |
Na (mg/kg) | 125 | 25 | 819 | 136 | 8.36 | 2.96 |
Zn (mg/kg) | 2.2 | 0.3 | 20.8 | 2.4 | 21.84 | 3.99 |
Fe (mg/kg) | 7.5 | 2.0 | 42.0 | 6.3 | 11.45 | 3.27 |
Mn (mg/kg) | 7.1 | 3.0 | 23.0 | 2.5 | 10.85 | 2.30 |
Cu (mg/kg) | 1.2 | 0.4 | 8.5 | 0.9 | 28.49 | 4.43 |
CEC ‡ | 26.9 | 8.0 | 33.0 | 5.51 | 2.55 | −1.75 |
Sand (%) | 49.3 | 30.0 | 80.0 | 9.34 | 1.09 | 0.83 |
Silt (%) | 22.0 | 10.0 | 37.5 | 5.15 | 0.16 | 0.38 |
Clay (%) | 28.8 | 10.0 | 37.5 | 6.11 | 1.01 | −1.07 |
Fluorescence Measurements | Soil Properties | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Salt | OM | N | P | K | S | Ca | Mg | Na | Zn | Fe | Mn | Cu | CEC | Sand | Silt | Clay | |
YF_UV | 0.00 | 0.01 | 0.00 | 0.05 | 0.13 | 0.03 | 0.01 | 0.17 | 0.01 | 0.01 | 0.01 | 0.01 | 0.26 | 0.08 | 0.02 | 0.01 | 0.02 | 0.02 |
RF_UV | 0.00 | 0.00 | 0.01 | 0.02 | 0.04 | 0.01 | 0.03 | 0.04 | 0.01 | 0.00 | 0.01 | 0.01 | 0.05 | 0.00 | 0.09 | 0.01 | 0.02 | 0.00 |
FRF_UV | 0.00 | 0.00 | 0.01 | 0.01 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.00 | 0.05 | 0.01 | 0.02 | 0.01 |
YF_B | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.05 | 0.20 | 0.01 | 0.00 | 0.01 | 0.01 | 0.03 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 |
RF_B | 0.00 | 0.00 | 0.01 | 0.02 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 |
FRF_B | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
YF_G | 0.01 | 0.01 | 0.30 | 0.02 | 0.19 | 0.06 | 0.02 | 0.02 | 0.01 | 0.00 | 0.02 | 0.01 | 0.06 | 0.04 | 0.02 | 0.03 | 0.01 | 0.01 |
RF_G | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
FRF_G | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
YF_R | 0.10 | 0.00 | 0.41 | 0.01 | 0.08 | 0.03 | 0.02 | 0.04 | 0.01 | 0.00 | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 |
RF_R | 0.00 | 0.01 | 0.03 | 0.04 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.02 | 0.02 | 0.01 | 0.00 | 0.03 | 0.01 | 0.01 |
FRF_R | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 |
SFR_G | 0.14 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.07 | 0.06 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 |
SFR_R | 0.00 | 0.14 | 0.01 | 0.10 | 0.04 | 0.02 | 0.04 | 0.02 | 0.02 | 0.00 | 0.05 | 0.01 | 0.05 | 0.00 | 0.01 | 0.17 | 0.46 | 0.09 |
FLAV | 0.08 | 0.59 | 0.00 | 0.20 | 0.01 | 0.45 | 0.39 | 0.06 | 0.10 | 0.26 | 0.01 | 0.01 | 0.02 | 0.01 | 0.04 | 0.04 | 0.02 | 0.14 |
FER_RG | 0.01 | 0.00 | 0.00 | 0.04 | 0.02 | 0.05 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.03 | 0.02 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 |
ANTH_RG | 0.01 | 0.00 | 0.00 | 0.03 | 0.02 | 0.05 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.04 | 0.00 | 0.00 | 0.02 | 0.02 | 0.06 |
ANTH_RB | 0.02 | 0.00 | 0.01 | 0.16 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 | 0.02 | 0.03 | 0.03 | 0.10 |
NBI_G | 0.04 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.03 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 |
NBI_R | 0.00 | 0.09 | 0.01 | 0.12 | 0.06 | 0.08 | 0.10 | 0.02 | 0.02 | 0.22 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.08 | 0.02 | 0.02 |
FERARI | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 |
NBI_Rm | 0.00 | 0.10 | 0.01 | 0.09 | 0.04 | 0.05 | 0.10 | 0.01 | 0.02 | 0.29 | 0.01 | 0.00 | 0.02 | 0.02 | 0.02 | 0.14 | 0.02 | 0.02 |
NBI_Gm | 0.05 | 0.00 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | 0.04 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
NBI_Bm | 0.02 | 0.03 | 0.12 | 0.01 | 0.02 | 0.01 | 0.08 | 0.02 | 0.02 | 0.12 | 0.01 | 0.01 | 0.04 | 0.08 | 0.03 | 0.04 | 0.02 | 0.02 |
NBI_UVm | 0.47 | 0.01 | 0.01 | 0.02 | 0.15 | 0.03 | 0.02 | 0.30 | 0.58 | 0.01 | 0.79 | 0.63 | 0.06 | 0.59 | 0.55 | 0.24 | 0.16 | 0.38 |
Training Dataset (n = 100) | Test Dataset (n = 68) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Parameter | Fertility Classes | BASE | OA | BA | Fertility Classes | BASE | OA | BA | ||||||||
Very Low | Low | Medium | High | Very High | Very Low | Low | Medium | High | Very High | |||||||
NO3-N | 0.82 (31) | 0.71 (39) | 0.66 (10) | 0.75 (7) | 0.92 (13) | 0.39 | 0.65 | 0.68 | 0.81 (31) | 0.72 (25) | 0.66 (16) | 0.54 (13) | 0.74 (15) | 0.31 | 0.54 | 0.50 |
SOM | 0.87 (23) | 0.79 (66) | 0.68 (11) | 0.66 | 0.84 | 0.81 | 0.86 (24) | 0.72 (66) | 0.50 (10) | 0.66 | 0.78 | 0.57 | ||||
P | 0.83 (8) | 0.84 (31) | 0.77 (31) | 0.90 (30) | 0.43 | 0.80 | 0.66 | 0.50 (2) | 0.79 (40) | 0.63 (4) | 0.78 (54) | 0.40 | 0.66 | 0.48 | ||
K | 1.00 (100) | 1.00 | 1.00 | 1.00 | 1.00 (100) | 1.00 | 1.00 | 1.00 | ||||||||
Zn | 0.82 (22) | 0.60 (25) | 0.81 (53) | 0.53 | 0.74 | 0.70 | 0.80 (26) | 0.60 (29) | 0.79 (54) | 0.44 | 0.69 | 0.64 | ||||
S | 0.50 (98) | 0.50 (2) | 1.00 | 0.98 | 1.00 | 1.00 (100) | 1.00 | 1.00 | 1.00 | |||||||
Fe | 0.64 (7) | 0.54 (36) | 0.65 (57) | 0.50 | 0.65 | 0.90 | 0.50 (3) | 0.55 (41) | 0.57 (56) | 0.56 | 0.60 | 0.37 | ||||
Salt | 0.50 (99) | 0.50 (1) | 0.99 | 0.99 | 1.00 | 1.00 (100) | 1.00 | 1.00 | 1.00 | |||||||
Mn | 1.00 (100) | 1.00 | 1.00 | 1.00 | 1.00 (100) | 1.00 | 1.00 | 1.00 | ||||||||
Cu | 1.00 (100) | 1.00 | 1.00 | 1.00 | 1.00 (100) | 1.00 | 1.00 | 1.00 |
N | BASE | OA | BA | Under-Estimated | Over-Estimated | |
---|---|---|---|---|---|---|
Training | 100 | 0.41 | 0.91 | 0.91 | 5% | 4% |
Test | 68 | 0.28 | 0.78 | 0.77 | 10% | 12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longchamps, L.; Mandal, D.; Khosla, R. Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning. Sensors 2022, 22, 4644. https://doi.org/10.3390/s22124644
Longchamps L, Mandal D, Khosla R. Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning. Sensors. 2022; 22(12):4644. https://doi.org/10.3390/s22124644
Chicago/Turabian StyleLongchamps, Louis, Dipankar Mandal, and Raj Khosla. 2022. "Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning" Sensors 22, no. 12: 4644. https://doi.org/10.3390/s22124644
APA StyleLongchamps, L., Mandal, D., & Khosla, R. (2022). Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning. Sensors, 22(12), 4644. https://doi.org/10.3390/s22124644