Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems
Abstract
:1. Introduction
2. Problem Formulation
3. Recursive BCRLBs for Prediction and Smoothing
3.1. BCRLBs for General TASD Systems
3.1.1. BCRLB for Prediction
3.1.2. BCRLB for Smoothing
3.2. Comparison with the BCRLBs for Nonlinear Regular Systems
3.3. BCRLBs for TASD Systems with Additive Gaussian Noise
4. Recursive BCRLBs for Two Special Types of Nonlinear TASD Systems
4.1. BCRLBs for Systems with Autocorrelated Measurement Noises
4.2. BCRLBs for Systems with Noises Cross-Correlated at One Time Step Apart
5. Illustrative Examples
5.1. Example 1: Autocorrelated Measurement Noises
5.2. Example 2: Cross-Correlated Process and Measurement Noises at One Time Step Apart
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCRLB | Bayesian Cramér-Rao lower bound |
CPCRLB | conditional posterior Cramér-Rao lower bound |
CKF | cubature Kalman filter |
CKP | cubature Kalman predictor |
CKS | cubature Kalman smoother |
FIM | Fisher information matrix |
MSE | mean square error |
MMSE | minimum mean squared error |
JCRLB | joint Cramér-Rao lower bound |
PCRLB | posterior Cramér-Rao lower bound |
probability density function | |
RMSE | root mean square error |
TASD | Two-adjacent-states dependent |
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
Appendix C. Proof of Theorem 3
Appendix D. Proof of Theorem 4
Appendix E. Proof of Theorem 6
References
- Bar-Shalom, Y.; Willett, P.; Tian, X. Tracking and Data Fusion: A Handbook of Algorithms; YBS Publishing: Storrs, CT, USA, 2011. [Google Scholar]
- Mallick, M.; Tian, X.Q.; Zhu, Y.; Morelande, M. Angle-only filtering of a maneuvering target in 3D. Sensors 2022, 22, 1422. [Google Scholar] [CrossRef]
- Li, Z.H.; Xu, B.; Yang, J.; Song, J.S. A steady-state Kalman predictor-based filtering strategy for non-overlapping sub-band spectral estimation. Sensors 2015, 15, 110–134. [Google Scholar] [CrossRef]
- Lu, X.D.; Xie, Y.T.; Zhou, J. Improved spatial registration and target tracking method for sensors on multiple missiles. Sensors 2018, 18, 1723. [Google Scholar] [CrossRef] [Green Version]
- Ntemi, M.; Kotropoulos, C. Prediction methods for time evolving dyadic processes. In Proceedings of the 26th European Signal Process, Roma, Italy, 3–7 September 2018; pp. 2588–2592. [Google Scholar]
- Chen, G.; Meng, X.; Wang, Y.; Zhang, Y.; Tian, P.; Yang, H. Integrated WiFi/PDR/Smartphone using an unscented Kalman filter algorithm for 3D indoor localization. Sensors 2015, 15, 24595–24614. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, X.Y.; Li, Q.H. Autonomous integrated navigation for indoor robots utilizing on-line iterated extended Rauch-Tung-Striebel smoothing. Sensors 2013, 13, 15937–15953. [Google Scholar] [CrossRef] [Green Version]
- Kalmam, R.E. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.F. The Kalman filter—Its recognition and development for aerospace applications. J. Guid. Control Dyn. 1981, 4, 4–7. [Google Scholar] [CrossRef]
- Norgaard, M.; Poulsen, N.; Ravn, O. New developments in state estimation of nonlinear systems. Automatica 2000, 36, 1627–1638. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Julier, S.; Uhlmann, J.; Durrant-Whyte, H.F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Automat. Contr. 2000, 45, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Arasaratnam, I.; Haykin, S.; Elliott, R.J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proc. IEEE 2007, 95, 953–977. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wu, W. Strong tracking spherical simplex-radial cubature Kalman filter for maneuvering target tracking. Sensors 2017, 17, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.R.; Jilkov, V.P. A survey of maneuvering target tracking: Approximation techniques for nonlinear filtering. In Proceedings of the SPIE Conference Signal Data Process, Small Targets, Orlando, FL, USA, 25 August 2004; pp. 537–550. [Google Scholar]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, T.; Sun, S.; Corchado, J.M. A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 2017, 17, 2707. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.L. Optimal and self-tuning information fusion Kalman multi-step predictor. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 418–427. [Google Scholar] [CrossRef]
- Adnan, R.; Ruslan, F.A.; Samad, A.M.; Zain, Z.M. Extended Kalman filter (EKF) prediction of flood water level. In Proceedings of the 2012 IEEE Control and System Graduate Research Colloquium, Shah Alam, Malaysia, 16–17 July 2012; pp. 171–174. [Google Scholar]
- Tian, X.M.; Cao, Y.P.; Chen, S. Process fault prognosis using a fuzzy-adaptive unscented Kalman predictor. Int. J. Adapt. Control Signal Process. 2011, 25, 813–830. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Xu, M.L.; Liu, X.X.; Wang, X.Y. Online multivariate time series prediction using SCKF-γESN model. Neurocomputing 2015, 147, 315–323. [Google Scholar] [CrossRef]
- Wang, D.; Yang, F.F.; Tsui, K.L.; Zhou, Q.; Bae, S.J. Remaining useful life prediction of Lithium-Ion batteries based on spherical cubature particle filter. IEEE Trans. Instrum. Meas. 2016, 65, 1282–1291. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Leondes, C.T.; Peller, J.B.; Stear, E.B. Nonlinear smoothing theory. IEEE Trans. Syst. Sci. Cybern. 1970, 6, 63–71. [Google Scholar] [CrossRef]
- Sarkka, S. Unscented Rauch-Tung-Striebel smoother. IEEE Trans. Autom. Control 2008, 53, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Arasaratnam, I.; Haykin, S. Cubature Kalman smoothers. Automatica 2011, 47, 2245–2250. [Google Scholar] [CrossRef]
- Lindsten, F.; Bunch, P.; Godsill, S.J.; Schon, T.B. Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space models. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6288–6292. [Google Scholar]
- Wu, W.R.; Chang, D.C. Maneuvering target tracking with colored noise. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1311–1320. [Google Scholar]
- Li, Z.; Wang, Y.; Zheng, W. Adaptive consensus-based unscented information filter for tracking target with maneuver and colored noise. Sensors 2019, 19, 3069. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.N.; Xie, Y.J.; Song, Y.; Liang, H.B. Multipath parameters estimation of weak GPS signal based on new colored noise unscented Kalman filter. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 1852–1856. [Google Scholar]
- Jamoos, A.; Grivel, E.; Bobillet, W.; Guidorzi, R. Errors-in-variables based approach for the identification of AR time-varying fading channels. IEEE Signal Process. Lett. 2007, 14, 793–796. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Karimi, M.; Amindavar, H. Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eigenvalue problem. Signal Process. 2012, 92, 1151–1156. [Google Scholar] [CrossRef]
- Gustafsson, F.; Saha, S. Particle filtering with dependent noise. In Proceedings of the 13th International Conference on Information Fusion, Edinburgh, UK, 26–29 July 2010; pp. 26–29. [Google Scholar]
- Zuo, D.G.; Han, C.Z.; Wei, R.X.; Lin, Z. Synchronized multi-sensor tracks association and fusion. In Proceedings of the 4th International Conference on Information Fusion, Montreal, QC, Canada, 7–10 August 2001; pp. 1–6. [Google Scholar]
- Chui, C.K.; Chen, G. Kalman Filtering: With Real-Time Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Wang, X.X.; Pan, Q. Nonlinear Gaussian filter with the colored measurement noise. In Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 7–10 July 2014; pp. 1–7. [Google Scholar]
- Wang, X.X.; Liang, Y.; Pan, Q.; Zhao, C.; Yang, F. Nonlinear Gaussian smoother with colored measurement noise. IEEE Trans. Autom. Control 2015, 60, 870–876. [Google Scholar] [CrossRef]
- Saha, S.; Gustafsson, F. Particle filtering with dependent noise processes. IEEE Trans. Signal Process. 2012, 60, 4497–4508. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Zhang, Y.G.; Li, N.; Shi, Z. Design of Gaussian approximate filter and smoother for nonlinear systems with correlated noises at one epoch apart. Circ. Syst. Signal Process. 2016, 35, 3981–4008. [Google Scholar] [CrossRef]
- Van Trees, H.L.; Bell, K.L.; Tian, Z. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Filtering Theory, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hernandez, M. Performance Bounds for Target Tracking: Computationally Efficient Formulations and Associated Applications. In Integrated Tracking, Classification, and Sensor Management: Theory and Applications; Mallick, M., Krishnamurthy, V., Vo, B.-N., Eds.; Wiley-IEEE Press: Piscataway, NJ, USA, 2012; pp. 255–310. [Google Scholar]
- Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Tichavsky, P.; Muravchik, C.H.; Nehorai, A. Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans. Signal Process. 1998, 46, 1386–1396. [Google Scholar] [CrossRef] [Green Version]
- Simandl, M.; Kralovec, J.; Tichavsky, P. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems. Automatica 2001, 37, 1703–1716. [Google Scholar] [CrossRef]
- Zuo, L.; Niu, R.X.; Varshney, P.K. Conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process. 2011, 59, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.J.; Ozdemir, O.; Niu, R.X.; Varshney, P.K. New conditional posterior Cramér-Rao lower bounds for nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process. 2012, 60, 5549–5556. [Google Scholar] [CrossRef]
- Wang, Z.G.; Shen, X.J.; Zhu, Y.M. Posterior Cramér-Rao bounds for nonlinear dynamic system with colored noises. J. Syst. Sci. Complex. 2019, 32, 1526–1543. [Google Scholar] [CrossRef]
- Fritsche, C.; Saha, S.; Gustafsson, F. Bayesian Cramér-Rao bound for nonlinear filtering with dependent noise processes. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 797–804. [Google Scholar]
- Huang, Y.L.; Zhang, Y.G. A new conditional posterior Cramér-Rao lower bound for a class of nonlinear systems. Int. J. Syst. Sci. 2016, 47, 3206–3218. [Google Scholar] [CrossRef]
- Li, X.Q.; Duan, Z.S.; Hanebeck, U.D. Recursive joint Cramér-Rao lower bound for parametric systems with two-adjacent-states dependent measurements. IET Signal Process. 2021, 15, 221–237. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part I: Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1333–1364. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Duan, Z.; Tang, Q.; Mallick, M. Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems. Sensors 2022, 22, 4667. https://doi.org/10.3390/s22134667
Li X, Duan Z, Tang Q, Mallick M. Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems. Sensors. 2022; 22(13):4667. https://doi.org/10.3390/s22134667
Chicago/Turabian StyleLi, Xianqing, Zhansheng Duan, Qi Tang, and Mahendra Mallick. 2022. "Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems" Sensors 22, no. 13: 4667. https://doi.org/10.3390/s22134667
APA StyleLi, X., Duan, Z., Tang, Q., & Mallick, M. (2022). Bayesian Cramér-Rao Lower Bounds for Prediction and Smoothing of Nonlinear TASD Systems. Sensors, 22(13), 4667. https://doi.org/10.3390/s22134667