Moving Object Detection Based on Fusion of Depth Information and RGB Features
Abstract
:1. Introduction
- In this paper, we propose a color edge-guided depth map super-resolution CNN, which uses the correspondence between the color map and the depth map to input both the low-resolution depth map and the high-resolution color-optimized edge map of the same scene into the network, and it uses the edge map to guide the depth map reconstruction. The final experimental results show that the proposed model effectively improves the quality of the depth map after super-resolution.
- We propose an RGB-D based codebook moving object detection algorithm, which adds the depth information of the scene as an auxiliary dimension based on the original codebook algorithm, including two parts of background modeling and foreground detection, and it takes advantage of the depth information not being disturbed by shadows, illumination and occlusion to better segment moving objects.
2. Related Works
2.1. Depth Image Super-Resolution Reconstruction
2.2. Moving Target Detection
3. Proposed Method
3.1. Depth Map Super-Resolution Reconstruction Based on Color Edge Guidance
3.1.1. Edge Graph Preprocessing
3.1.2. Network Model Framework
3.2. Codebook Moving Target Detection Algorithm Based on RGB-D
3.2.1. Algorithm Overview
3.2.2. Specific Algorithm Flow
- Background modeling of the original codebook algorithm
Algorithm 1 Codebook background modeling algorithm |
|
- Foreground detection of original codebook algorithm
Algorithm 2 Codebook foreground detection algorithm |
|
- Codebook moving target detection algorithm based on RGB-D
4. Results and Discussion
4.1. Depth Map Super-Resolution Reconstruction Based on Color Edge Guidance
4.1.1. Experimental Setup
4.1.2. Qualitative Analysis
4.1.3. Quantitative Analysis
4.2. Codebook Moving Target Detection Algorithm Based on RGB-D
4.2.1. Qualitative Analysis
- Experimental Scenario One: the target is close to the background
- Experimental Scenario Two: the target is similar to the background color
- Experimental Scenario Three: sudden illumination changes
4.2.2. Quantitative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuo, J.; Jia, Z.; Yang, J.; Kasabov, N. Moving target detection based on improved Gaussian mixture background subtraction in video images. IEEE Access. 2019, 7, 152612–152623. [Google Scholar] [CrossRef]
- Yazdi, M.; Bouwmans, T. New trends on moving object detection in video images captured by a moving camera: A survey. Comput. Sci. Rev. 2018, 28, 157–177. [Google Scholar] [CrossRef]
- Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground–background segmentation using codebook model. Real-Time Imaging 2005, 11, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.T.; Jones, T.R.; Pasztor, E.C. Example-based super-resolution. IEEE Comput. Graph. Appl. 2002, 22, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the 13th European Conference on Computer Vision (ECCV2014), Zurich, Switzerland, 6–12 September 2014; pp. 184–199. [Google Scholar]
- Mandal, S.; Bhavsar, A.; Sao, A.K. Depth map restoration from undersampled data. IEEE Trans. Image Process. 2016, 26, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Li, L.; Yue, H.; Wu, F.; Ling, N. Depth map super-resolution considering view synthesis quality. IEEE Trans. Image Process. 2017, 26, 1732–1745. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Khan, S.; Barnes, N. A deep journey into super-resolution: A survey. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Li, Z.; Yang, J.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback network for image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3867–3876. [Google Scholar]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single image super-resolution via a holistic attention network. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- Rajagopalan, A.N.; Bhavsar, A.; Wallhoff, F.; Rigoll, G. Resolution enhancement of pmd range maps. In Proceedings of the Dagm Symposium on Pattern Recognition, Munich, Germany, 10–13 June 2008; pp. 304–313. [Google Scholar]
- Wetzl, J.; Taubmann, O.; Haase, S.; Köhler, T.; Kraus, M.; Hornegger, J. GPU-accelerated time-of-flight super-resolution for image-guided surgery. In Bildverarbeitung für die Medizin; Meinzer, H.P., Deserno, T., Handels, H., Tolxdorff, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–26. [Google Scholar]
- Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Fitzgibbon, A. Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568. [Google Scholar]
- Ferstl, D.; Reinbacher, C.; Ranftl, R.; Rüther, M.; Bischof, H. Image guided depth upsampling using anisotropic total generalized variation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 993–1000. [Google Scholar]
- Zhang, T. Research on Moving Target Detection Technology Based on RGB-D Data. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, January 2017. [Google Scholar]
- Yang, J.; Ye, X.; Li, K.; Hou, C.; Wang, Y. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. IEEE Trans. Image Process. 2014, 23, 3443–3458. [Google Scholar] [CrossRef] [PubMed]
- Song, X. Research on Depth Image Enhancement Based on RGB-D Information. Doctoral Dissertation, Shan Dong University, Jinan, China, November 2017. [Google Scholar]
- Wen, Y.; Sheng, B.; Li, P.; Lin, W.; Feng, D.D. Deep color guided coarse-to-fine convolutional network cascade for depth image super-resolution. IEEE Trans. Image Process. 2018, 28, 994–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y. Moving object extraction based on background difference and frame difference method. Computer Era 2014, 3, 38–41. [Google Scholar]
- Weng, M.; Huang, G.; Da, X. A new interframe difference algorithm for moving target detection. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 285–289. [Google Scholar]
- Hu, J.; Li, Y.; Pan, X. An Improved Optical Flow Algorithmin in Vehicle Identification and Tracking. Sci. Technol. Eng. 2010, 10, 5814–5817. [Google Scholar]
- Zhang, Y. Research of Moving Target Detection Based on Optical Flow Algorithm. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, June 2018. [Google Scholar]
- Cui, P. Research on Moving Targets Detection and Tracking Algorithms in Complex Interference Scenes. Master’s Thesis, Jiangnan University, Wuxi, China, June 2021. [Google Scholar]
- Qiu, S.; Li, X. Moving target extraction and background reconstruction algorithm. J. Ambient. Intell. Humaniz. Comput. 2020, 1–9. [Google Scholar] [CrossRef]
- Sun, T.; Qi, Y.; Geng, G. Moving object detection algorithm based on frame difference and background subtraction. J. Jilin Univ. (Eng. Technol. Ed.) 2016, 4, 1325–1329. [Google Scholar]
- Parvizi, E.; Wu, Q.J. Multiple object tracking based on adaptive depth segmentation. In Proceedings of the 2008 Canadian Conference on Computer and Robot Vision (CRV), Windsor, ON, Canada, 28–30 May 2008; pp. 273–277. [Google Scholar]
- Ottonelli, S.; Spagnolo, P.; Mazzeo, P.L.; Leo, M. Improved video segmentation with color and depth using a stereo camera. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 1134–1139. [Google Scholar]
- Hu, L.; Duan, L.; Zhang, X.; Yang, J. Moving Object Detection Based on the Fusion of Color and Depth Information. J. Electron. Inf. Technol. 2014, 9, 2047–2052. [Google Scholar]
- Hu, T.; Zhu, X.; Guo, W.; Zhang, F. A Moving Object Detection Method Combining Color and Depth data. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 276–282. [Google Scholar]
- Li, D.; Guan, Z.W.; Chen, Q.; Shi, H.P.; Wang, T.; Yue, H.H. Research on Road Traffic Moving Target Detection Method Based on Sequential Inter Frame Difference and Optical Flow Method. In Artificial Intelligence in China; Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z., Eds.; Springer: Singapore, 2022; pp. 376–383. [Google Scholar]
- Liu, F.; Liu, P.; Zhang, J.; Xu, B. Joint Detection of RGB-D Images Based on Double Flow Convolutional Neural Network. Laser Optoelectron. Prog. 2017, 55, 386–394. [Google Scholar]
- Ni, M. Research on the Key Technologies of RGB-D Image Processing Based on Deep Learning. Master’s Thesis, Tianjin University, Tianjin, China, December 2017. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Goyette, N.; Jodoin, P.M.; Porikli, F.; Konrad, J.; Ishwar, P. Changedetection.net: A new change detection benchmark dataset. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 1–8. [Google Scholar]
- Martull, S.; Peris, M.; Fukui, K. Realistic CG stereo image dataset with ground truth disparity maps. IEICE Tech. Rep. Speech 2012, 111, 117–118. [Google Scholar]
- Scharstein, D.; Pal, C. Learning conditional random fields for stereo. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I. High quality depth map upsampling for 3d-tof cameras. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1623–1630. [Google Scholar]
- Hui, T.W.; Loy, C.C.; Tang, X. Depth map super-resolution by deep multi-scale guidance. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 353–369. [Google Scholar]
- Camplani, M.; Maddalena, L.; Moyá Alcover, G.; Petrosino, A.; Salgado, L. A benchmarking framework for background subtraction in RGBD videos. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017; pp. 219–229. [Google Scholar]
- Javed, S.; Bouwmans, T.; Sultana, M.; Jung, S.K. Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017; pp. 230–241. [Google Scholar]
- De Gregorio, M.; Giordano, M. CwisarDH+: Background Detection in RGBD Videos by Learning of Weightless Neural Networks. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017; pp. 242–253. [Google Scholar]
- Dorudian, N.; Lauria, S.; Swift, S. Moving object detection using adaptive blind update and RGB-D camera. IEEE Sens. J. 2019, 19, 8191–8201. [Google Scholar] [CrossRef] [Green Version]
Art | Books | Moebius | ||||
---|---|---|---|---|---|---|
2× | 4× | 2× | 4× | 2× | 4× | |
Bicubic | 2.630 | 3.872 | 1.045 | 1.604 | 0.870 | 1.329 |
Bilinear | 2.875 | 4.150 | 1.132 | 1.698 | 0.955 | 1.431 |
Park et al. | 2.833 | 3.498 | 1.088 | 1.530 | 1.064 | 1.349 |
Ferstl et al. | 3.164 | 3.761 | 1.370 | 1.770 | 1.153 | 1.497 |
SRCNN | 1.924 | 2.651 | 0.793 | 1.150 | 0.726 | 1.049 |
The proposed model | 1.051 | 2.222 | 0.437 | 0.873 | 0.505 | 0.905 |
Dolls | Laundry | Reindeer | ||||
---|---|---|---|---|---|---|
2× | 4× | 2× | 4× | 2× | 4× | |
Bicubic | 0.910 | 1.309 | 1.601 | 2.396 | 1.928 | 2.814 |
Bilinear | 0.987 | 1.400 | 1.738 | 2.548 | 2.096 | 3.014 |
Park et al. | 0.963 | 1.301 | 1.552 | 2.132 | 1.834 | 2.407 |
Ferstl et al. | 1.164 | 1.435 | 1.891 | 2.681 | 2.546 | 3.165 |
SRCNN | 0.8 | 1.124 | 1.095 | 1.742 | 1.378 | 2.013 |
The proposed model | 0.679 | 1.063 | 0.663 | 1.321 | 0.803 | 1.687 |
Parameters | Values | Parameters | Values | Parameters | Values |
---|---|---|---|---|---|
0.75 | 1.3 | 5 | |||
0.97 | 1.05 | 25 | |||
0.45 | 1.4 | k | 8 |
Wall | Hallway | Shelves | |||
---|---|---|---|---|---|
74th Frame | 94th Frame | 134th Frame | 258th Frame | 390th Frame | |
SRPCA [42] | 0.8192 | 0.7846 | 0.8433 | 0.7835 | 0.7598 |
CwisarDH+ [43] | 0.8966 | 0.5737 | 0.4932 | 0.9736 | 0.9945 |
BSABU [44] | 0.2736 | 0.9892 | 0.9770 | 0.9843 | 0.9912 |
Original algorithm | 0.9182 | 0.8642 | 0.8367 | 0.8756 | 0.7102 |
Original algorithm after morphological operations | 0.9374 | 0.8704 | 0.8636 | 0.9199 | 0.7748 |
Proposed algorithm | 0.9916 | 0.9953 | 0.9889 | 0.9620 | 0.9960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, X.; Yang, S.; Tong, P. Moving Object Detection Based on Fusion of Depth Information and RGB Features. Sensors 2022, 22, 4702. https://doi.org/10.3390/s22134702
Bi X, Yang S, Tong P. Moving Object Detection Based on Fusion of Depth Information and RGB Features. Sensors. 2022; 22(13):4702. https://doi.org/10.3390/s22134702
Chicago/Turabian StyleBi, Xin, Shichao Yang, and Panpan Tong. 2022. "Moving Object Detection Based on Fusion of Depth Information and RGB Features" Sensors 22, no. 13: 4702. https://doi.org/10.3390/s22134702
APA StyleBi, X., Yang, S., & Tong, P. (2022). Moving Object Detection Based on Fusion of Depth Information and RGB Features. Sensors, 22(13), 4702. https://doi.org/10.3390/s22134702