Miniaturization of Laser Doppler Vibrometers—A Review
Abstract
:1. Background and Working Principle of LDV
2. Working Principle of LDV
3. Compact Techniques for the Interferometer
3.1. PIC-Based LDV
Core /Cladding | Silicon /SiO2 (SOI) | GaAs/Al0.3Ga0.7As | InGaAsP /InP | Si3N4 /SiO2 | Silica or PLC | LiNbO3 /SiO2 | Polymer |
---|---|---|---|---|---|---|---|
RIC (at 1550 nm) | 3.48/1.45 | 3.43/3.28 | 3.25/3.16 | 2/1.45 | 1.47/1.45 [47] | 2.13/1.45 (extra) | 1.58/1.5 SU-8 [61] |
waveguide loss (dB/cm) | 2 (ridge) 0.3 (rib) [54] | 1.6 (ridge) [42] | 2 (p-doped) [44] 0.4 (localized Zn-diffusion) [62] | 0.042 (LPCVD strip) [63] | <0.06 (doped) [64] 0.53 (ion-exchange) [65] | 0.3 (ridge) [66] | 0.35 (RIC = 1.455/1.45 [67]) |
Minimal bend radius (µm) | 5 (0.03 dB/90°) [68] 2 (0.4 dB/90°) [69] | 25 (suspended, 10 dB/cm) [70] | 10 (deeply etched, 0.5 dB/90°) [69] | 300 (0.1–0.2 dB/cm) [48] | 2000 [47] | >200 (1.2 dB/cm) [71] | 1000 (<0.1 dB/90° @850 nm) [72] |
Grating coupler loss (dB) | 1.6 dB (with poly-silicon overlay) [73] 0.9 dB (apodization) [74] | 4 (suspended grating coupler) [70] | No report for InP substrate | 2.5 (with reflector [75]) | No report | 12 [76] | 8 dB [77] |
Butt coupler loss (dB) | <2 (to lensed fiber) [78] | 1.5 (to lensed fiber) [42] | <2 [79] | <1 [56] | 0.4 [47] | 6 [76] | 0.8 [80] |
Laser sorce | Hetero integration [59]/MOB [60] | Monolithic | Monolithic [81] | Hybrid [59] and Hetero Integration [82] | Hybrid integration | Hybrid integration | Hybrid integration |
Optical isolator | MOB/monolithic [83] | No report | Monolithic [84] | Monolithic [85] | Hybrid integration | No report | Hybrid integration [86] |
90° optical hybrid | Monolithic [87] | No report | Monolithic [88] | Only simulation report [89] | Monolithic [90] | Monolithic [91] | Monolithic [92] |
Frequency shifter | Monolithic (SSBM [93], serrodyne [36,94]) | Monolithic [95] | No report | No report | No report | Monolithic (Serrodyne [96]) | No report |
PD | Monolithic (Ge PD [58]) | Monolithic | Monolithic [81] | Hetero Integration [97] | Hybrid integration [47] | Hybrid integration [98] | Hetero integration [99] |
Phase modulator | Monolithic (TO [100], PN [40]) | Monolithic [101] | Monolithic [102] | Hetero integration [103,104] | Monolithic (TO, UV [47]) Hybrid (LiNiO3 [47]) | Monolithic [76] | TO [61] EO [105] |
Other components | SOA [106] | SOA [81] |
3.1.1. Homodyne PIC-Based LDV
3.1.2. Heterodyne PIC-Based LDV
3.1.3. Comparison of Reported PIC-Based LDVs
3.2. Self-Mixing LDV
3.3. Micromachined Free-Space Interferometer of LDV
4. Comparison of Different Compact LDVs and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doppler, C. Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. In Abhandlungen der königlichen Böhm. Gesellschaft der Wissenschaften; Verlag der Königl. Böhm. Gesellschaft der Wissenschaften: Prague, Czech Republic, 1842; Volume 2, pp. 465–482. [Google Scholar]
- Yeh, Y.; Cummings, H. Localized fluid flow measurements with a HeNe laser spectrometer. Appl. Phys. Lett. 1964, 4, 176–178. [Google Scholar] [CrossRef]
- Tropea, C. Laser Doppler anemometry: Recent developments and future challenges. Meas. Sci. Technol. 1995, 6, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Rajan, V.; Varghese, B.; van Leeuwen, T.; Steenbergen, W. Review of methodological developments in laser Doppler flowmetry. Lasers Med. Sci. 2009, 24, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Rothberg, S.; Allen, M.; Castellini, P.; Maio, D.D.; Dirckx, J.; Ewins, D.; Halkon, B.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2019, 99, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Johansmann, M.; Siegmund, G.; Pineda, M. Targeting the Limits of Laser Doppler Vibrometry. Proc. Int. Disk. Drive Equip. Mater. Assoc. 2005, 1–12. [Google Scholar]
- Briers, J. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol. Meas. 2001, 22, R35–R66. [Google Scholar] [CrossRef]
- Stanbridge, A.; Ewins, D. Modal testing using a scanning laser Doppler vibrometer. Mech. Syst. Signal Processing 1999, 13, 255–270. [Google Scholar] [CrossRef]
- Bi, S.; Ren, J.; Wang, W.; Zong, G. Elimination of transducer mass loading effects in shaker modal testing. Mech. Syst. Signal Processing 2013, 38, 265–275. [Google Scholar] [CrossRef]
- Nassif, H.; Gindy, M.; Davis, J. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT E Int. 2005, 38, 213–218. [Google Scholar] [CrossRef]
- Malekjafarian, A.; Martinez, D.; O’Brien, E. The Feasibility of Using Laser Doppler Vibrometer Measurements from a Passing Vehicle for Bridge Damage Detection. Shock Vib. 2018, 2018, 9385171. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Marsili, R.; Gusella, V.; Gioffre, M. Comparison between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges. Shock Vib. 2002, 9, 11–18. [Google Scholar] [CrossRef]
- Valla, M.; Gueguen, P.; Augère, B.; Goular, D.; Perrault, M. Remote Modal Study of Reinforced Concrete Buildings Using a Multipath Lidar Vibrometer. J. Struct. Eng. 2015, 141, D4014005. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Xu, Z.; Liu, M.; Tang, D.; Lu, W.; Li, Z.; Teng, J.; Han, X.; Said, S.; Rohrmann, R. Estimation of the Lateral Dynamic Displacement of High-Rise Buildings under Wind Load Based on Fusion of a Remote Sensing Vibrometer and an Inclinometer. Remote Sens. 2020, 12, 1120. [Google Scholar] [CrossRef] [Green Version]
- Gueguen, P.; Jolivet, V.; Michel, C.; Schveitzer, A.-S. Comparison of velocimeter and coherent lidar measurements for building frequency assessment. Bull. Earthq. Eng. 2010, 8, 327–338. [Google Scholar] [CrossRef]
- Yang, S.; Allen, M. Output-only Modal Analysis using Continuous-Scan Laser Doppler Vibrometry and application to a 20 kW wind turbine. Mech. Syst. Signal Processing 2012, 31, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Marks, R.; Gillam, C.; Clarke, A.; Armstrong, J.; Pullin, R. Damage detection in a composite wind turbine blade using 3D scanning laser vibrometry. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 3024–3041. [Google Scholar] [CrossRef] [Green Version]
- Jacquin, L.; Fabre, D.; Sipp, D.; Theofilis, V.; Vollmers, H. Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 2003, 7, 577–593. [Google Scholar] [CrossRef]
- Krasnoveikin, V.; Smolin, I.; Druzhinin, N.; Kolubaev, E.; Derusova, D. Modal testing circuit board assembly of an electronic apparatus by laser vibrometry. IOP Conf. Ser. Mater. Sci. Eng. 2016, 156, 012005. [Google Scholar] [CrossRef] [Green Version]
- Whittemore, K.; Merchant, S.; Poon, B.; Rosowski, J. A normative study of tympanic membrane motion in humans using a laser doppler vibrometer (LDV). Hear. Res. 2003, 187, 85–104. [Google Scholar] [CrossRef]
- Li, Y.; Marais, L.; Khettab, H.; Quan, Z.; Aasmul, S.; Leinders, R.; Schüler, R.; Morrissey, P.; Greenwald, S.; Segers, P.; et al. Silicon photonics-based laser Doppler vibrometer array for carotid-femoral pulse wave velocity (PWV) measurement. Biomed. Opt. Express 2020, 11, 3913–3926. [Google Scholar] [CrossRef]
- Mignanelli, L.; Rembe, C. Feasibility study of the employment of laser Doppler Vibrometry for photoacoustic imaging. J. Phys. Conf. Ser. 2018, 1149, 012028. [Google Scholar] [CrossRef]
- Uehan, F. Rockfall risk evaluation system with laser & drone measurement. Jpn. Railw. Eng. 2017, 196, 2–5. [Google Scholar]
- Aranchuk, V.; Sabatier, J.; Lal, A.; Hess, C.; Burgett, R.; O’Neill, M. Multi-beam laser Doppler vibrometry for acoustic landmine detection using airborne and mechanically coupled vibration. In Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets X, Orlando, FL, USA, 10 June 2005. [Google Scholar]
- Zorović, M.; Čokl, A. Laser vibrometry as a diagnostic tool for detecting wood-boring beetle larvae. J. Pest Sci. 2015, 88, 107–112. [Google Scholar] [CrossRef]
- Abe, K. Self-mixing laser Doppler vibrometry with high optical sensitivity: Application to real-time sound reproduction. New J. Phys. 2003, 5, 8. [Google Scholar] [CrossRef]
- Bissinger, G.; Oliver, D. 3-D laser vibrometry on legendary old Italian violins. Sound Vib. 2007, 41, 10–15. [Google Scholar]
- Zoran, A.; Welch, S.; Hunt, W. A platform for manipulation and examination of the acoustic guitar: The Chameleon guitar. Appl. Acoust. 2012, 73, 338–347. [Google Scholar] [CrossRef]
- Ryan, T.; O’Malley, P.; Glean, A.; Vignola, J.; Judge, J. Conformal scanning laser Doppler vibrometer measurement of tenor steelpan response to impulse excitation. J. Acoust. Soc. Am. 2012, 132, 3494–3501. [Google Scholar] [CrossRef]
- Suh, G.; Kim, H.; Yôiti, S. Measurement of resonance frequency and loss factor of a microphone diaphragm using a laser vibrometer. Appl. Acoust. 2010, 71, 258–261. [Google Scholar] [CrossRef]
- Zipser, L.; Franke, H. Laser-scanning vibrometry for ultrasonic transducer development. Sens. Actuators A Phys. 2004, 110, 264–268. [Google Scholar] [CrossRef]
- Rembe, C.; Muller, R. Measurement system for full three-dimensional motion characterization of MEMS. J. Microelectromech. Syst. 2002, 11, 479–488. [Google Scholar] [CrossRef]
- Garg, P.; Nasimi, R.; Ozdagli, A.; Zhang, S.; Mascarenas, D.; Taha, M.; Moreu, F. Measuring Transverse Displacement Using Unmanned Aerial Systems Laser Doppler Vibrometer (UAS-LDV): Development and Field Validation. Sensors 2020, 20, 6051. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Baets, R. Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids. Opt. Express 2013, 21, 13342–13350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priti, R.; Zhang, G.; Lioiron-Ladoucheur, O. 3 × 10 Gb/s silicon three-mode switch with 120° hybrid based unbalanced Mach-Zehnder interferometer. Opt. Express 2019, 27, 14199. [Google Scholar] [CrossRef]
- Li, Y.; Verstuyft, S.; Yurtsever, G.; Keyvaninia, S.; Roelkens, G.; van Thourhout, D.; Baets, R. Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters. Appl. Opt. 2013, 52, 2145–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.; Cox, C. Serrodyne optical frequency translation with high sideband suppression. J. Lightwave Technol. 1988, 6, 109–112. [Google Scholar] [CrossRef]
- Waz, A.; Kaczmarek, P.; Abramski, K. Laser–fibre vibrometry at 1550 nm. Meas. Sci. Technol. 2009, 20, 105301. [Google Scholar] [CrossRef]
- Kowarsch, R.; Rembe, C. Heterodyne interferometry at ultra-high frequencies with frequency-offset locked semiconductor lasers. Meas. Sci. Technol. 2021, 31, 075201. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: A review. Sci. Bull. 2018, 63, 1267–1310. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Chen, Y.; Duan, G.; Neilson, D. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Wang, J.; Santamato, A.; Jiang, P.; Bonneau, D.; Engin, E.; Silverstone, J.; Lermer, M.; Beetz, J.; Kamp, M.; Höfling, S.; et al. Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 2014, 327, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, C.; Fiore, A.; Thompson, M.; Kamp, M.; Hofling, S. GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev. 2016, 10, 870–894. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; Leijtens, X.; Ambrosius, H.; Bente, E.; Van der Tol, J.; Smalbrugge, B.; de Vries, T.; Geluk, E.J.; Bolk, J.; van Veldhoven, R.; et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 2014, 29, 083001. [Google Scholar] [CrossRef]
- Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 050901. [Google Scholar] [CrossRef] [Green Version]
- Rubiyanto, A.; Herrmann, H.; Ricken, R.; Tian, F.; Sohler, W. Integrated optical heterodyne interferometer in Lithium Niobate. J. Nonlinear Opt. Phys. Mater. 2001, 10, 163–168. [Google Scholar] [CrossRef]
- Takahashi, H. High performance planar lightwave circuit devices for large capacity transmission. Opt. Express 2011, 19, B173–B180. [Google Scholar] [CrossRef]
- Blumenthal, D.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S.; et al. Expanding the Silicon Photonics Portfolio with Silicon Nitride Photonic Integrated Circuits. J. Lightwave Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
- Dangel, R.; la Porta, A.; Jubin, D.; Horst, F.; Meier, N.; Seifried, M.; Offrein, B. Polymer Waveguides Enabling Scalable Low-Loss Adiabatic Optical Coupling for Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8200211. [Google Scholar] [CrossRef]
- Selvaraja, S.; Sethi, P. Review on Optical Waveguides. In Emerging Waveguide Technology; IntechOpen: London, UK, 2018. [Google Scholar]
- Corning, S.M.F. 28e Optical Fiber Product Information; Corning: New York, NY, USA, 2005. [Google Scholar]
- Slevaraja, S. Wafer-Scale Fabrication Technology for Silicon Photonic Integrated Circuits. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2011. [Google Scholar]
- Bogaerts, W.; Selvaraja, S. Compact Single-mode Silicon Hybrid Rib/Strip Waveguide with Adiabatic Bends. IEEE Photonics J. 2011, 3, 422–432. [Google Scholar] [CrossRef]
- Chen, X.; Panoiu, N.; Osgood, R. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 2006, 14, 5524–5534. [Google Scholar]
- Luque-González, J.; Halir, R.; Wangüemert-Pérez, J.; de-Oliva-Rubio, J.; Schmid, J.; Cheben, P.; Molina-Fernández, I.; Ortega-Moñux, A. An Ultracompact GRIN-Lens-Based Spot Size Converter using Subwavelength Grating Metamaterials. Laser Photonics Rev. 2019, 13, 1900172. [Google Scholar] [CrossRef] [Green Version]
- Taillaert, D.; Laere, F.V.; Ayre, M.; Bogaerts, W.; van Thourhout, D.; Bienstman, P.; Baets, R. Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Jpn. J. Appl. Phys. 2006, 45, 6071–6077. [Google Scholar] [CrossRef] [Green Version]
- Koester, S.; Schaub, J.; Dehlinger, G.; Chu, J. Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1489–1502. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light Adv. Manuf. 2021, 2, 59–83. [Google Scholar] [CrossRef]
- Duperron, M.; Carroll, L.; Rensing, M.; Collins, S.; Zhao, Y.; Li, Y.; Baets, R.; O’Brien, P. Hybrid Integration of Laser Source on Silicon Photonic Integrated Circuit for low-cost Interferometry Medical Device. In Proceedings of the Optical Interconnects XVII, San Francisco, CA, USA, 20 February 2017; p. 1010915. [Google Scholar]
- Lin, X.; Ling, T.; Subbaraman, H.; Guo, L.; Chen, R. Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing. Opt. Express 2013, 21, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, D.; Carnicella, G.; Ciminelli, C.; Thijs, P.; Veldhoven, P.; Ambrosius, H.; Smit, M. Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt. Express 2015, 23, 25143–25157. [Google Scholar] [CrossRef]
- Luke, K.; Dutt, A.; Poitras, C.; Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 2013, 21, 22829–22833. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, D.; Ferrera, M.; Razzari, C.; Morandotti, R.; Little, B.; Chu, S.; Moss, D. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 2009, 17, 1865–1870. [Google Scholar] [CrossRef]
- Wang, F.; Chen, B.; Pun, E.; Lin, H. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide. Opt. Mater. 2015, 42, 484–490. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y.; Volet, N.; Wang, L.; Peters, J.; Bowers, J.E. Thin film wavelength converters for photonic integrated circuits. Optica 2016, 3, 531–535. [Google Scholar] [CrossRef]
- Kim, J.; Choi, C. Polymeric PLC-type thermo-optic optical attenuator fabricated by UV imprint technique. Opt. Commun. 2006, 257, 72–75. [Google Scholar] [CrossRef]
- Selvaraja, S.; Bogaerts, W.; Absil, P.; van Thourhout, D.; Baets, R. Record low-loss hybrid rib/wire waveguides for silicon photonic circuits. In Proceedings of the 7th International Conference on Group IV Photonics, Beijing, China, 1–3 September 2010. [Google Scholar]
- Takenaka, M.; Takagi, S. InP-based photonic integrated circuit platform on SiC wafer. Opt. Express 2017, 25, 29993. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Balram, K. Suspended gallium arsenide platform for building large scale photonic integrated circuits: Passive devices. Opt. Express 2020, 28, 12262–12271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.; Patil, A.; Chiles, J.; Malinowski, M.; Novak, S.; Richardson, K.; Rabiei, P.; Fathpour, S. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 2015, 23, 22746–22752. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Yu, S.; Gu, T.; Hu, J. Low loss, flexible single-mode polymer photonics. Opt. Express 2019, 27, 11152–11159. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; van Thourhout, D.; Roelkens, G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 2010, 18, 18278–18283. [Google Scholar] [CrossRef]
- Marchetti, R.; Lacava, C.; Khokhar, A.; Chen, X.; Cristiani, I.; Richardson, D.; Reed, G.; Petropoulos, P.; Minzioni, R. High-efficiency grating couplers: Demonstration of a new design strategy. Sci. Rep. 2017, 7, 16670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, C.; Tu, X.; Song, J.; Zhou, H.; Luo, X.; Huang, Y.; Yu, M.; Lo, G. Efficient silicon nitride grating coupler with distributed Bragg reflectors. Opt. Express 2014, 22, 21800–21805. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Prokop, C.; Schoenhardt, S.; Laegel, B.; Wolff, S.; Mitchell, A.; Karnutsch, C. Air-Suspended SU-8 Polymer Waveguide Grating Couplers. J. Lightwave Technol. 2016, 34, 3966–3971. [Google Scholar] [CrossRef]
- Mu, X.; Wu, S.; Cheng, L.; Fu, H.Y. Edge couplers in silicon photonic integrated circuits: A review. Appl. Sci. 2020, 10, 1538. [Google Scholar] [CrossRef] [Green Version]
- Soares, F.; Baier, M.; Gaertner, T.; Grote, N.; Moehrle, M.; Beckerwerth, T.; Runge, P.; Schell, M. InP-Based Foundry PICs for Optical Interconnects. Appl. Sci. 2019, 9, 1588. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ma, L.; Jiang, S.; He, Z. Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm. Opt. Express 2017, 25, 25689. [Google Scholar] [CrossRef] [PubMed]
- Isaac, B.; Song, B.; Pinna, S.; Coldren, L.; Klamkin, J. Indium Phosphide Photonic Integrated Circuit Transceiver for FMCW LiDAR. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 8000107. [Google Scholar] [CrossRef]
- Cuyvers, S.; Haq, B.; Op de Beeck, C.; Poelman, S.; Hermans, A.; Wang, Z.; Gocalinska, A.; Ellamei, M.; Corbett, B.; Roelkens, G.; et al. Low Noise Heterogeneous III-V-on-Silicon-Nitride Mode-Locked Comb Laser. Laser Photonics Rev. 2021, 15, 2000485. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Q.; Wang, C.; Fakhrul, T.; Liu, S.; Deng, L.; Huang, D.; Pintus, P.; Bowers, J.; Ross, C.; et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 2019, 6, 473–478. [Google Scholar] [CrossRef]
- Shimizu, H.; Goto, S. InGaAsP/InP evanescent mode waveguide optical isolators and their application to InGaAsP/InP/Si hybrid evanescent optical isolators. Opt. Quantum Electron. 2009, 41, 653–660. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.; Liu, S.; Zhang, Y.; Xia, S.; Kang, T.; Yang, W.; Qin, J.; Deng, L.; Bi, L. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 2020, 7, 1555. [Google Scholar] [CrossRef]
- Conradi, H.; de Felipe, D.; Kleinert, M.; Nuck, M.; Zawadzki, C.; Scheu, A.; Keil, N.; Schell, M. High Isolation Optical Isolator: A new Building Block for PolyBoard Photonic Integrated Circuits. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar]
- Halir, R.; Roelkens, G.; Ortega-Moñux, A.; Wangüemert-Pérez, J. High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler. Opt. Lett. 2011, 36, 178–180. [Google Scholar] [CrossRef]
- Inoue, N.; Yagi, H.; Masuyama, R.; Katsuyama, T.; Yoneda, Y.; Shoji, H. InP-based Photodetector Monolithically Integrated with 90° Hybrid for 100 Gbit/s Compact Coherent Receivers. SEI Tech. Rev. 2014, 79, 66–71. [Google Scholar]
- Yu, J.; Mu, J.; Chen, K.; de Goede, M.; Dijkstra, M.; He, S.; García-Blanco, S.M. High-performance 90° hybrids based on MMI couplers in Si3N4 technology. Opt. Commun. 2020, 465, 125620. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Nasu, Y.; Hashimoto, T.; Hattori, K.; Saida, T.; Takahashi, H. Reduction of phase-difference deviation in 90° optical hybrid over wide wavelength range. IEICE Electron. Express 2010, 7, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Heidrich, H.; Wenke, G.; Langenhorst, R.; Dietrich, E. Integrated Optics Eight-Port 90 Hybrid on LiNbO3. J. Lightwave Technol. 1989, 7, 794. [Google Scholar] [CrossRef]
- Jiménez, I. Design of an Integrated Coherent Receiver with Polarization Diversity. Master’s Thesis, Polytechnic University of Catalonia, Barcelona, Spain, 2014. [Google Scholar]
- Cole, D.; Sorace-Agaskar, C.; Moresco, M.; Leake, G.; Coolbaugh, D.; Watts, M. Integrated heterodyne interferometer with on-chip modulators and detectors. Opt. Lett. 2015, 40, 3097–3100. [Google Scholar] [CrossRef] [Green Version]
- Spuesens, T.; Li, Y.; Verheyen, P.; Lepage, G.; Balakrishnan, S.; Absil, P.; Baets, R. Integrated Optical Frequency shifter on a silicon platform. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 5–10 June 2016; p. SF2G.1. [Google Scholar]
- Ibrahim, S.; Bhandare, S.; Sandel, D.; Zhang, H.; Noe, R. Non-magnetic 30 dB integrated optical isolator in III/V material. Electron. Lett. 2004, 40, 1293–1294. [Google Scholar] [CrossRef]
- Poberezhskiy, I.; Bortnik, B.; Chou, J.; Jalali, B.; Fetterman, H. Serrodyne Frequency Translation of Continuous Optical Signals Using Ultrawide-band Electrical Sawtooth Waveforms. IEEE J. Quantum Electron. 2005, 41, 1533–1539. [Google Scholar] [CrossRef]
- Yu, Q.; Gao, J.; Ye, N.; Chen, B.; Sun, K.; Xie, L.; Srinivasan, K.; Zervas, M.; Navickaite, G.; Geiselmann, M.; et al. Heterogeneous photodiodes on silicon nitride waveguides. Opt. Express 2020, 28, 14824–14830. [Google Scholar] [CrossRef]
- Miyazaki, N.; Ooizumi, K.; Hara, T.; Yamada, M.; Nagata, H.; Sakane, T. LiNbO3 Optical Intensity Modulator Packaged with Monitor Photodiode. IEEE Photonics Technol. Lett. 2001, 13, 442–444. [Google Scholar] [CrossRef]
- Song, F.; Xiao, J.; Xie, A.; Seo, S. A polymer waveguide grating sensor integrated with a thinfilm. J. Opt. 2014, 16, 015503. [Google Scholar] [CrossRef] [Green Version]
- Pruessner, M.; Stievater, T.; Ferraro, M.; Rabinovich, W. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Opt. Express 2007, 15, 7557–7563. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, J.; Sun, Y.; Han, X.; Cao, Y.; Zhao, R. Chip scale GaAs optical phased arrays for high speed beam steering. Appl. Opt. 2020, 59, 8310. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, M.; Yunusov, I.; Arykov, V.; Troyan, P.; Zhidik, Y. Multi-Parameter Optimization of an InP Electro-Optic Modulator. Symmetry 2020, 12, 1920. [Google Scholar] [CrossRef]
- Alexander, K.; George, J.; Verbist, J.; Neyts, K.; Kuyken, B.; van Thourhout, D.; Beeckman, J. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 2018, 9, 3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phare, C.; Lee, Y.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- Lammlin, M. GaAs-Based Semiconductor Optical Amplifiers with Quantum Dots as an Active Medium. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2007. [Google Scholar]
- Helleso, O.; Benech, P.; Rimet, R. Interferometric displacement sensor made by integrated optics on glass. Sens. Actuators A Phys. 1995, 47, 478–481. [Google Scholar] [CrossRef]
- Mezouk, W.; Cagneau, B.; Gardillou, F.; Hilouane, K.; Chassagne, L. Highly compact and easy-to-use optical chip interferometer with picometric performances. Rev. Sci. Instrum. 2016, 87, 103103. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, D.; Zappe, H.; Dandliker, R. Optical Displacement Measurement with GaAs/AlGaAs-Based Monolithically Integrated Michelson Interferometers. J. Lightwave Technol. 1997, 15, 663–670. [Google Scholar] [CrossRef]
- Available online: http://www.cardis-h2020.eu/ (accessed on 1 June 2022).
- Li, Y.; Zhu, J.; Duperrron, M.; O’Brien, P.; Schuler, R.; Aasmul, S.; de Melis, M.; Kersermans, M.; Baets, R. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 2018, 26, 3638–3645. [Google Scholar] [CrossRef] [Green Version]
- Mere, V.; Kallegaa, R.; Naika, A.; Pratapa, R.; Selvaraja, S. Silicon Photonics based On-chip Vibrometer. In Proceedings of the MOEMS and Miniaturized Systems XVII, San Francisco, CA, USA, 30–31 January 2018; Volume 105450. [Google Scholar]
- Mere, V.; Dash, A.; Kallega, R.; Pratap, R.; Naik, A.; Selvaraja, S. On-chip silicon photonics based grating assisted vibration sensor. Opt. Express 2020, 28, 27495. [Google Scholar] [CrossRef]
- Toda, H.; Haruna, M.; Nishihara, H. Integrated-Optics Heterodyne Interferometer for displacement measurement. J. Lightwave Technol. 1991, 9, 683–687. [Google Scholar] [CrossRef]
- Tian, F.; Ricken, R.; Schmid, S.; Sohler, W. Integrated Acousto-Optical Heterodyne Interferometers in LiNbO3. In Laser in der Technik/Laser in Engineering; Springer: Berlin/Heidelberg, Germany, 1994; pp. 725–728. [Google Scholar]
- Jestel, D.; Baus, A.; Voges, E. Integrated-opitc interferometric microdisplacement sensor in glass with thermo-optic phase modulation. Electron. Lett. 1990, 26, 1144–1145. [Google Scholar] [CrossRef]
- Izutsu, M.; Enokihara, A.; Sueta, T. Optical-waveguide micro-displacement sensor. Electron. Lett. 1982, 18, 867–868. [Google Scholar] [CrossRef]
- Gleine, W.; Muller, J. Integrated Optical Interferometer on silicon substrates. In Proceedings of the Micro-Optics, Hamburg, Germany, 5 April 1989. [Google Scholar]
- Ura, S.; Suhara, T.; Nishihara, H. Integrated-Optic Interferometer Position Sensor. J. Lightwave Technol. 1989, 7, 270–273. [Google Scholar] [CrossRef]
- Valette, S.; Renard, S.; Jadot, J.; Gidon, P.; Erbeia, C. Silicon-based Integrated Optics Technology for Optical Sensor Applications. Sens. Actuators A Phys. 1990, 23, 1087–1091. [Google Scholar] [CrossRef]
- Helleso, O.; Benech, P.; Rimet, R. Displacement Sensor Made by Potassium Diffusion on Glass. J. Lightwave Technol. 1994, 12, 568–572. [Google Scholar] [CrossRef]
- Taimre, T.; Nikolic, M.; Bertling, K.; Lim, Y.; Bosch, T.; Rakic, A. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonic 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Li, J.; Niu, H.; Niu, Y. Laser feedback interferometry and applications: A review. Opt. Eng. 2017, 56, 050901. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Perchoux, J.; Campagnolo, L.; Camps, T.; Atashkhooei, R.; Bardinal, V. Optical feedback interferometry for microscale-flow sensing study: Numerical simulation and experimental validation. Opt. Express 2016, 24, 23849. [Google Scholar] [CrossRef]
- King, P.; Steward, G. Metrology with an optical maser. New Sci. 1963, 17, 180. [Google Scholar]
- Rudd, M. A laser Doppler velocimeter employing the laser as a mixer–oscillator. J. Phys. E Sci. Instrum. 1968, 1, 723–726. [Google Scholar] [CrossRef]
- Shimizu, E. Directional discrimination in the self-mixing type laser Doppler velocimeter. Appl. Opt. 1987, 26, 4541–4544. [Google Scholar] [CrossRef] [PubMed]
- Koelink, M.; Slot, M.; de Mul, F.; Greve, J.; Graaff, R.; Dassel, A.; Aarnoudse, J. Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: Theory. Appl. Opt. 1992, 31, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Tkach, R.; Chraplyvy, A. Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers. J. Lightwave Technol. 1986, 4, 1655–1661. [Google Scholar] [CrossRef]
- Donati, S. Developing self-mixing interferometry for instrumentation and measurements. Laser Photonics Rev. 2011, 6, 393–417. [Google Scholar] [CrossRef]
- de Groot, P.; Gallatin, G.; Macomber, S. Ranging and velocimetry signal generation in a backscatter-modulated laser diode. Appl. Opt. 1988, 27, 4475–4480. [Google Scholar] [CrossRef]
- Wang, W.; Boyle, W.; Grattan, K.; Palmer, A. Self-mixing interference in a diode laser: Experimental observations and theoretical analysis. Appl. Opt. 1993, 32, 1551–1558. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External Optical Feedback Effects on Semiconductor Injection Laser Properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Toa, Y.; Wang, M.; Xia, W. Carrier-separating demodulation of phase shifting self-mixing interferometry. Opt. Laser Technol. 2017, 89, 75–85. [Google Scholar]
- Merlo, S.; Donati, S. Laser Diode Feedack Interferometer for Measurement of Displacements without Ambiguity. IEEE J. Quantum Electron. 1995, 31, 113–119. [Google Scholar]
- Plantier, G.; Bes, C.; Bosch, T. Behavioral model of a self-mixing laser diode sensor. IEEE J. Quantum Electron. 2005, 41, 1157–1167. [Google Scholar] [CrossRef]
- Donati, S. Laser interferometry by induced modulation of cavity field. J. Appl. Phys. 1978, 49, 495–497. [Google Scholar] [CrossRef]
- Giallorenzi, T.; Bucaro, J.; Dandridge, A.; Siegel, G.; Cole, J.; Rashleigh, S.; Priest, R. Optical fiber sensor technology. IEEE J. Quantum Electron. 1982, 18, 626–665. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Bozzi-Pietra, S.; Donati, S. Self-mixing laser diode vibrometer. Meas. Sci. Technol. 2002, 14, 24–32. [Google Scholar] [CrossRef]
- Magnani, A.; Melchionni, D.; Pesatori, A.; Norgia, M. Self-mixing digital closed-loop vibrometer for high accuracy vibration measurements. Opt. Commun. 2016, 365, 133–139. [Google Scholar] [CrossRef]
- Zang, D.; Millerd, J. Heterodyned Self-Mixing Laser Diode Vibrometer. U.S. Patent 5,838,439, 17 November 1998. [Google Scholar]
- Fu, Y.; Guo, M.; Phua, P. Spatially encoded multibeam laser Doppler vibrometry using a single photodetector. Opt. Lett. 2010, 35, 1356–1358. [Google Scholar] [CrossRef]
- Sabry, Y.; Khalil, D.; Bourouina, T. Monolithic silicon-micromachined free-space optical interferometers onchip. Laser Photonics Rev. 2015, 9, 1–24. [Google Scholar] [CrossRef]
- Yu, K.; Lee, D.; Krishnamoorthy, U.; Park, N.; Solgaard, O. Micromachined Fourier Transform Spectrometer on Silicon Optical Bench Platform. Sens. Actuators A Phys. 2006, 130, 523–530. [Google Scholar] [CrossRef]
- Saadany, B.; Omran, H.; Medhat, M.; Marty, F.; Khalil, D.; Bourouina, T. MEMS tunable Michelson interferometer with robust beam splitting architecture. In Proceedings of the 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, Clearwater, FL, USA, 17–20 August 2009. [Google Scholar]
- Nouira, H.; Wallerand, J.-P.; Malak, M.; Obaton, A.-F.; Salgado, J.; Bourouina, T. Miniature silicon Michelson interferometer characterization for dimensional metrology. Sens. Actuators A Phys. 2015, 223, 141–150. [Google Scholar] [CrossRef]
- Malak, M.; Marty, F.; Nouira, H.; Vailleau, G.; Bourouina, T. All-silicon Michelson instrument on chip: Distance and surface profile measurement and prospects for visible light spectrometry. Appl. Phys. Lett. 2013, 102, 141102. [Google Scholar] [CrossRef]
- Omran, H.; Medhat, M.; Mortada, B.; Saadany, B.; Khalil, D. Fully Integrated Mach-Zhender MEMS Interferometer with Two Complementary Outputs. IEEE J. Quantum Electron. 2012, 48, 244–251. [Google Scholar] [CrossRef]
- Huang, D.; Tran, M.; Guo, J.; Peters, J.; Komljenovic, T.; Malik, A.; Morton, P.; Bowers, J. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 2019, 6, 745. [Google Scholar] [CrossRef] [Green Version]
Authors (Year) | Homodyne/Heterodyne | PIC Material /Light Wavelength | Reported Resolution | Notes |
---|---|---|---|---|
Izutsu/ 1982 [117] | Homodyne | LiNbO3/0.63 µm | <10 nm | MI + Mirror reflection, the output power is in the range of µW. |
Gleine/ 1988 [118] | Homodyne | Silica/632.8 nm | no report | Double Michelson interferometer |
Ura/ 1988 [119] | Homodyne | Silica/0.78 µm | 10 nm | Use a special grating coupler, laser input power = 3 mW |
Valette/ 1990 [120] | Homodyne | Silica/770−790 nm | 100 nm | |
Helleso/ 1994 [121] | Homodyne | Silica/830 nm | 0.7 nm | Double-MI, laser input power = 1 mW |
Hofstetter/ 1997 [109] | Homodyne | GaAs/AlGaAs /820 nm | 20 nm | Monolithically integrated laser and PDs; Input laser power >5 mW; Single MI PIC has a length of 1.95 mm; Double MI PIC has a length of 2.6 mm. |
Li/2013 [34] 2018 [111] 2020 [21] | Homodyne | SOI/1550 nm | 15 pm/sqrt(Hz) retro-reflection <1 pm/sqrt(Hz) mirror reflection | Laser input power = 8 mW; Output power <50 µW; 6 beam PIC has a size of 2.5 mm × 5 mm |
Merzouk/ 2016 [108] | Homodyne | Silica/1542 nm | 100 fm/sqrt(Hz) @8 Hz 400 fm/sqrt(Hz) @100 Hz | MZI, with mirror reflection; output optical power = 140 µW. The 100 fm/sqrt(Hz) was obtained in a deep underground station and was not reproduced. |
Mere/ 2018 [112] 2020 [113] | Homodyne | SOI/1550 nm | 156 fm/sqrt(Hz) | MZI, only for cantilever; laser input power = 4 mW, output power = 7 µW. Displacement sensitivity = 10 µW/nm |
Jestel/1990 [116] | Heterodyne | Silica/0.63 µm | 1 nm | MI, serrodyne on TO modulator; = 2 kHz |
Toda/1991[114] | Heterodyne | LiNbO3/0.63 µm | 3 nm | = 200 kHz, laser input power = 100 µW |
Tian/1994 [115] | Heterodyne | LiNbO3/1545 nm | 45 pm | = 171 MHz |
Rubiyanto/ 2001 [46] | Heterodyne | LiNbO3/1561 nm | 105 pm | = 171 MHz |
Li/ 2013 [36] | Heterodyne | SOI/1550 nm | <1 nm | = 2 kHz |
Cole/ 2015 [93] | Heterodyne | SOI/1550 nm | 2 nm | = 50 Hz |
Optical MEMS | PIC | Self-Mixing | |
---|---|---|---|
Pros | support strong optical power, support multiple wavelength measurements | compact, low cost, hybrid integration of laser and isolator is possible, can realize multibeam sensing | very low cost, simple structure, support strong optical power, no need of an isolator |
Cons | cannot tell vibration directions, not enough mature components, no laser sources, no isolator, not easy to implement multibeam | relatively strong loss in the PIC (not too much optical power), no monolithic laser sources, requires an isolator | reflection power shouldn’t be too strong (need variable attenuator), complex demodulation when the reflection power is strong |
Required components | laser source, isolator, frequency shifter, 90° hybrid, PD, collimating beams | laser source, isolator, frequency shifter | distance measurement device, feedback system |
Future work | realize 90-degree optical hybrid and integrated PDs, reduce cost; multiple beam/wavelength | improve optical power, implement an integrated frequency shifter, higher number of beams; | find proper applications; improve demodulation algorithms. |
Size | compact | compact | very compact |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Dieussaert, E.; Baets, R. Miniaturization of Laser Doppler Vibrometers—A Review. Sensors 2022, 22, 4735. https://doi.org/10.3390/s22134735
Li Y, Dieussaert E, Baets R. Miniaturization of Laser Doppler Vibrometers—A Review. Sensors. 2022; 22(13):4735. https://doi.org/10.3390/s22134735
Chicago/Turabian StyleLi, Yanlu, Emiel Dieussaert, and Roel Baets. 2022. "Miniaturization of Laser Doppler Vibrometers—A Review" Sensors 22, no. 13: 4735. https://doi.org/10.3390/s22134735
APA StyleLi, Y., Dieussaert, E., & Baets, R. (2022). Miniaturization of Laser Doppler Vibrometers—A Review. Sensors, 22(13), 4735. https://doi.org/10.3390/s22134735