Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks
Abstract
:1. Introduction
2. Formulations
2.1. Snow Model and DMRT Model for PMRS
2.2. Deep ConvNet Architecture
2.3. Data Preparation and ConvNet Training
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.J. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys. 2005, 43, 43–66. [Google Scholar] [CrossRef]
- Frei, A.; Robinson, D.A. Northern Hemisphere snow extent: Regional variability 1972–1994. Int. J. Climatol. 1999, 19, 1535–1560. [Google Scholar] [CrossRef]
- Foster, J.L.; Hall, D.K.; Chang, A.T.C.; Rango, A. An overview of passive microwave snow research and results. Rev. Geophys. Space Phys. 1984, 22, 195–208. [Google Scholar] [CrossRef]
- Koike, T.; Suhama, T. Passive-microwave remote sensing of snow. Ann. Glaciol. 1993, 18, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Zhu, J.; Tsang, L.; Nghiem, S.V. Full wave simulation of snowpack applied to microwave remote sensing of sea ice. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1380–1383. [Google Scholar]
- Mätzler, C.; Wiesmann, A. Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sens. Environ. 1999, 70, 317–325. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, S.; King, J.; Derksen, C.; Lemmetyinen, J.; Tsang, L. Forward and Inverse Radar Modeling of Terrestrial Snow Using SnowSAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7122–7132. [Google Scholar] [CrossRef]
- Singh, R.; Gan, T.Y. Retrieval of snow water equivalent using passive microwave brightness temperature data. Remote Sens. Environ. 2000, 74, 275–286. [Google Scholar] [CrossRef]
- Solberg, R.; Rudjord, O.; Salberg, A.B.; Killie, M.A. A multi-sensor multitemporal algorithm for snow cover extent retrieval from optical and passive microwave data. In Proceedings of the 7th EARSeL Workshop on Land Ice and Snow, Bern, Switzerland, February 2014; pp. 3–6. [Google Scholar]
- Che, T.; Dai, L.; Zheng, X.; Li, X.; Zhao, K. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 2016, 183, 334–349. [Google Scholar] [CrossRef]
- Tanikawa, T.; Li, W.; Kuchiki, K.; Aoki, T.; Hori, M.; Stamnes, K. Retrieval of snow physical parameters by neural networks and optimal estimation: Case study for ground-based spectral radiometer system. Opt. Express 2015, 23, A1442–A1462. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Jolma, P. Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland. IEEE Trans. Geosci. Remote Sens. 1992, 30, 124–131. [Google Scholar] [CrossRef]
- Davis, D.T.; Chen, Z.; Tsang, L.; Hwang, J.-N.; Chang, A.T.C. Retrieval of snow parameters by iterative inversion of a neural network. IEEE Trans. Geosci. Remote Sens. 1993, 31, 842–851. [Google Scholar] [CrossRef]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Pulliainen, J.; Hallikainen, M. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sens. Environ. 2001, 75, 76–85. [Google Scholar] [CrossRef]
- Zhang, H.H.; Chen, R.S. Coherent processing and superresolution technique of multi-band radar data based on fast sparse Bayesian learning algorithm. IEEE Trans. Antennas Propag. 2014, 62, 6217–6227. [Google Scholar] [CrossRef]
- Yao, H.; Jiang, L.; Qin, Y. Machine learning based method of moments (ML-MoM). In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017. [Google Scholar]
- Shan, T.; Tang, W.; Dang, X.W.; Li, M.K.; Yang, F.; Xu, S.H.; Wu, J. Study on a Poisson’s Equation Solver Based On Deep Learning Technique. arXiv 2017, arXiv:1712.05559. [Google Scholar] [CrossRef]
- Yao, H.M.; Jiang, L. Machine-Learning-Based PML for the FDTD Method. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 192–196. [Google Scholar] [CrossRef]
- Yao, H.M.; Li, M.; Jiang, L. Applying Deep Learning Approach to the Far-Field Subwavelength Imaging Based on Near-Field Resonant Metalens at Microwave Frequencies. IEEE Access 2019, 7, 63801–63808. [Google Scholar] [CrossRef]
- Song, T.; Kuang, L.; Han, L.; Wang, Y.; Liu, Q.H. Inversion of Rough Surface Parameters From SAR Images Using Simulation-Trained Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1130–1134. [Google Scholar] [CrossRef]
- Zhang, H.H.; Yao, H.M.; Jiang, L.J. Embedding the behavior macromodel into TDIE for transient field-circuit simulations. IEEE Trans. Antennas Propag. 2016, 64, 3233–3238. [Google Scholar] [CrossRef]
- Zhang, H.H.; Jiang, L.J.; Yao, H.M.; Zhang, Y. Transient heterogeneous electromagnetic simulation with DGTD and behavioral macromodel. IEEE Trans. Electromagn. Compat. 2017, 59, 1152–1160. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Sun, J.; Zou, G.; Li, W. Adaptive Convolutional Neural Network and Its Application in Face Recognition. Neural Process. Lett. 2015, 43, 389–399. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, G.; Zheng, Z. Terahertz waves propagation in an inhomogeneous plasma layer using the improved scattering-matrix method. Waves Random Complex Media 2021, 31, 2466–2480. [Google Scholar] [CrossRef]
- Capelli, A.; Kapil, J.C.; Reiweger, I.; Or, D.; Schweizer, J. Speed and attenuation of acoustic waves in snow: Laboratory experiments and modeling with Biot’s theory. Cold Reg. Sci. Technol. 2016, 125, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tsang, L.; Chen, Z.; Oh, S.; Marks, R.J.; Chang, A.T.C. Inversion of snow parameters from passive microwave remote sensing measurement by a neural network trained with a multiple scattering model. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liu, X.; Huang, K.; Li, X.; Shi, X.; Chen, Y.; Li, J. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance. Remote Sens. Environ. 2015, 156, 500–509. [Google Scholar] [CrossRef]
- Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT). IEEE Trans. Geosci. Remote Sens. 2008, 46, 3663–3671. [Google Scholar] [CrossRef]
- Tan, S.; Chang, W.; Tsang, L.; Lemmetyinen, J.; Proksch, M. Modeling both active and passive microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple scattering and backscattering enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4418–4430. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y. Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Liu, T.; Duan, J. Deep learning for event-driven stock prediction. In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI’15), Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]
- Tymoshenko, K.; Bonadiman, D.; Moschitti, A. Convolutional neural networks vs. convolution kernels: Feature engineering for answer sentence reranking. In Proceedings of the NAACL-HLT, San Diego, CA, USA, 12–17 June 2016; pp. 1268–1278. [Google Scholar]
- Kim, P. MATLAB Deep Learning; Springer: New York, NY, USA, 2017. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. Proc. Int. Conf. Learn. Represent. 2015, 1–41. [Google Scholar] [CrossRef]
- Ng, A.Y. Feature Selection L1 vs. L2 Regularization and Rotational Invariance. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; pp. 78–86. [Google Scholar]
Type | Filter Number | Filter Size | Stride | Input Size | Output Size |
---|---|---|---|---|---|
Convolution | 10 | [2 1] | |||
ReLu | |||||
Convolution | 20 | [2 1] | |||
ReLu | |||||
Convolution | 30 | [2 1] | |||
ReLu | |||||
Fully-connected Regression | 480 | 2 |
RMSE | |||||
---|---|---|---|---|---|
DConvNet | 0.9964 | 0.3869 | |||
t | ANN | 0.9321 | 2.1036 | 1.0690 | 0.1839 |
SVM | 0.9667 | 0.6232 | 1.0307 | 0.6208 | |
DConvNet | 0.8380 | 1.7873 | |||
T | ANN | 0.3332 | 3.5625 | 2.5150 | 0.5017 |
SVM | 0.1749 | 6.4291 | 4.7913 | 0.2780 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Zhang, Y.; Jiang, L.; Ewe, H.T.; Ng, M. Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks. Sensors 2022, 22, 4769. https://doi.org/10.3390/s22134769
Yao H, Zhang Y, Jiang L, Ewe HT, Ng M. Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks. Sensors. 2022; 22(13):4769. https://doi.org/10.3390/s22134769
Chicago/Turabian StyleYao, Heming, Yanming Zhang, Lijun Jiang, Hong Tat Ewe, and Michael Ng. 2022. "Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks" Sensors 22, no. 13: 4769. https://doi.org/10.3390/s22134769
APA StyleYao, H., Zhang, Y., Jiang, L., Ewe, H. T., & Ng, M. (2022). Snow Parameters Inversion from Passive Microwave Remote Sensing Measurements by Deep Convolutional Neural Networks. Sensors, 22(13), 4769. https://doi.org/10.3390/s22134769