Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Analyses
3. Results and Discussion
3.1. Spatiotemporal Dynamic Features of Surface Ozone Concentrations
3.2. Relationship between Ozone and Meteorological Factors
3.3. Complexity and Uncertainty
ID | Area | Average (µg·m−3) | Standard Deviation, SD (µg·m−3) | Uncertain Measure (μg·m−3) | Component (μg·m−3) | Component (μg·m−3) | Notes [50] | |
---|---|---|---|---|---|---|---|---|
1 | BJ | BJ-B | 57.502 | 35.235 | 20.351 | 0.586 | 20.343 | |
2 | BJ-N | 63.888 | 38.455 | 22.215 | 0.754 | 22.202 | ||
3 | TJ | TJ-B | 60.795 | 39.840 | 23.014 | 0.742 | 23.002 | |
4 | TJ-N | 59.161 | 40.373 | 23.320 | 0.710 | 23.309 | ||
5 | TS | TS-B | 56.923 | 36.555 | 21.113 | 0.559 | 21.105 | |
6 | TS-N | - | - | - | - | - | No data | |
7 | BJ-TJ -TS | Built-up area | 57.878 | 37.342 | 21.561 | 0.238 | 21.559 | |
8 | Non-built-up area | 60.928 | 38.984 | 22.512 | 0.467 | 22.507 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, Q.; Hong, J.; Zhang, X.; Zhou, G.; Yu, S.; Xiao, Z. Temporal-Spatial Distribution of Tropospheric NO2 Remote Sensing Data in China Using OMI Satellite. Res. Environ. Sci. 2009, 22, 932–937. [Google Scholar] [CrossRef]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Resp. Crit. Care 2016, 193, 1134–1142. [Google Scholar] [CrossRef] [Green Version]
- Fowler, D.; Pilegaard, K.; Sutton, M.A.; Ambus, P.; Raivonen, M.; Duyzer, J.; Simpson, D.; Fagerli, H.; Fuzzi, S.; Schjoerring, J.K.; et al. Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmos. Environ. 2009, 43, 5193–5267. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [Green Version]
- Adame, J.A.; Gutiérrez-Álvarez, I.; Cristofanelli, P.; Notario, A.; Bogeat, J.A.; López, A.; Gómez, A.; Bolívar, J.P.; Yela, M. Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmos. Res. 2022, 269, 106048. [Google Scholar] [CrossRef]
- Ma, Z.W.; Liu, R.Y.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Song, H.; Wang, T.; Wang, F.; Li, X.; Miao, C.; Zhao, H. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environ. Pollut. 2020, 262, 114366. [Google Scholar] [CrossRef]
- Finch, D.P.; Palmer, P.I. Increasing ambient surface ozone levels over the UK accompanied by fewer extreme events. Atmos. Environ. 2020, 237, 117627. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Du, H.Y.; Xu, Y.Q.; Lu, D.B.; Wang, X.Y.; Guo, Z.Y. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631, 921–933. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Xu, Q.; Ho, T. Characterization and sensitivity analysis on ozone pollution over the Beaumont-Port Arthur Area in Texas of USA through source apportionment technologies. Atmos. Res. 2021, 247, 105249. [Google Scholar] [CrossRef]
- Squizzato, S.; Masiol, M.; Rich, D.Q.; Hopke, P.K. PM2.5 and gaseous pollutants in New York State during 2005-2016: Spatial variability, temporal trends, and economic influences. Atmos. Environ. 2018, 183, 209–224. [Google Scholar] [CrossRef]
- Choi, Y.; Souri, A.H. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space. Atmos. Environ. 2015, 106, 232–240. [Google Scholar] [CrossRef]
- Wilson, R.C.; Fleming, Z.L.; Monks, P.S.; Clain, G.; Henne, S.; Konovalov, I.B.; Szopa, S.; Menut, L. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996-2005. Atmos. Chem. Phys 2012, 12, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Song, Y.; Mao, Z.; Liu, M.; Huang, X. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China. Atmos. Environ. 2016, 127, 382–392. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Chen, Y.; Zhou, M.; Zheng, B.; Li, K.; Liu, Y.; Lin, J.; Fu, T.-M.; Zhang, Q. Exploring 2016-2017 surface ozone pollution over China: Source contributions and meteorological influences. Atmos. Chem. Phys. 2019, 19, 43. [Google Scholar] [CrossRef] [Green Version]
- Hertig, E.; Schneider, A.; Peters, A.; von Scheidt, W.; Kuch, B.; Meisinger, C. Association of ground-level ozone, meteorological factors and weather types with daily myocardial infarction frequencies in Augsburg, Southern Germany. Atmos. Environ. 2019, 217, 116975. [Google Scholar] [CrossRef]
- Zhang, X.D.; Du, J.; Zhang, L.M.; Huang, T.; Gao, H.; Mao, X.X.; Ma, J.M. Impact of afforestation on surface ozone in the North China Plain during the three-decade period. Agr. For. Meteorol. 2020, 287, 107979. [Google Scholar] [CrossRef]
- Tang, G.Q.; Liu, Y.T.; Huang, X.; Wang, Y.H.; Hu, B.; Zhang, Y.C.; Song, T.; Li, X.L.; Wu, S.; Li, Q.H.; et al. Aggravated ozone pollution in the strong free convection boundary layer. Sci. Total Environ. 2021, 788, 147740. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J.N. Impact of mandatory targets on PM2.5 concentration control in Chinese cities. J. Clean. Prod. 2018, 197, 323–331. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Q.; Lv, J. BP neural network for near-surface ozone estimation and spatial and temporal characteristics analysis. Bull. Surv. Mapp. 2021, 2021, 28–32. [Google Scholar] [CrossRef]
- Pei, T.; Xu, J.; Liu, Y.; Huang, X.; Zhang, L.; Dong, W.; Qin, C.; Song, C.; Gong, J.; Zhou, C. GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geogr. Sustain. 2021, 2, 207–215. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Dong, G.-h.; Yang, B.-y.; Liu, Y.; Lu, T.; Yu, P.; Guo, Y.; Li, S. Improving satellite-based estimation of surface ozone across China during 2008–2019 using iterative random forest model and high-resolution grid meteorological data. Sustain. Cities Soc. 2021, 69, 102807. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Zhang, H.H.; Han, L.; Ren, Y.; Yao, Y.; Sun, X.; Wang, X.; Zhou, W.; Zheng, H. Monitoring ozone concentrations along an urban to rural gradient of Beijing with a mobile vehicle. Acta Ecol. Sinca 2019, 39, 6803–6815. [Google Scholar] [CrossRef]
- Shao, M.; Wang, W.; Yuan, B.; Parrish, D.D.; Li, X.; Lu, K.; Wu, L.; Wang, X.; Mo, Z.; Yang, S.; et al. Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Sci. Total Environ. 2021, 788, 147712. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Karimian, H.; Li, M.; Fan, Q.; Xu, Z. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere 2022, 302, 134843. [Google Scholar] [CrossRef]
- Yu, Y.; Meng, X.; Wang, Z.; Zhou, W.; Yu, H. Driving Factors of the Significant Increase in Surface Ozone in the BeijingTianjin-Hebei Region, China, During 2013–2018. Environ. Sci. 2020, 41, 106–114. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Liu, Y.; Li, Q.; Ding, Y. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region. China Environ. Sci. 2019, 39, 2689–2698. [Google Scholar] [CrossRef]
- Kumar, S.P. Estimates ofthe regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Strode, S.A.; Ziemke, J.R.; Oman, L.D.; Lamsal, L.N.; Olsen, M.A.; Liu, J.H. Global changes in the diurnal cycle of surface ozone. Atmos. Environ. 2019, 199, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Yao, Q.; Sun, M.; Liu, A. Analysis and prediction of surface ozone concentration and related meteorological factors in summer in Tianjin. Ecol. Environ. Sci. 2009, 18, 2206–2210. [Google Scholar] [CrossRef]
- Chi, Y.; Fan, M.; Zhao, C.; Sun, L.; Yang, Y.; Yang, X.; Tao, J. Ground-level NO2 concentration estimation based on OMI tropospheric NO2 and its spatiotemporal characteristics in typical regions of China. Atmos. Res. 2021, 264, 105821. [Google Scholar] [CrossRef]
- Lin, M.Y.; Horowitz, L.W.; Payton, R.; Fiore, A.M.; Tonnesen, G. US surface ozone trends and extremes from 1980 to 2014: Quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem. Phys. 2017, 17, 2943–2970. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, J.; Kazuhiko, K.; Zhu, J. Influences of the meteorological factorson the ozone concentration near the ground. J. Cent. China Norm. Univ. (Nat. Sci.) 2005, 39, 273–277. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, H.L.; Yu, J.; He, M.M.; Xu, N.B.; Zhang, J.J.; Qian, F.Z.; Feng, J.Y.; Xiao, H. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. Atmos. Res. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Wang, X.; Cui, F.; Zhegn, Y. Characteristics of ozone pollution and its relationship with meteorological conditions from 2016-2019 in Tangshan. J. Metoerol. Environ. 2022, 38, 62–69. [Google Scholar]
- Hao, D.; Long, C.; Hanyue, W.; Xuhui, Z.; Yu, Z. Analysis of Ozone Pollution Characteristics and Meteorological Factors in Anhui Province. Environ. Monit. China 2021, 37, 58–68. [Google Scholar] [CrossRef]
- An, J.; Wang, Y.; Sun, Y. Assessment of ozone variations and meteorological effects in Beijing. Ecol. Environ. Sci. 2009, 18, 944–951. [Google Scholar] [CrossRef]
- Wang, L.; Liu, D.; Han, G.; Wang, Y.; Qing, T.; Jiang, L. Study on the relationship between surface ozone concentrations and meteorological conditions in Nanjing, China. Acta Sci. Circumstantiae 2018, 38, 1285–1296. [Google Scholar] [CrossRef]
- Gao, Z.; Ivey, C.E.; Blanchard, C.L.; Do, K.; Lee, S.M.; Russell, A.G. Separating emissions and meteorological impacts on peak ozone concentrations in Southern California using generalized additive modeling. Environ. Pollut. 2022, 307, 119503. [Google Scholar] [CrossRef]
- Qian, J.; Liao, H.; Yang, Y.; Li, K.; Chen, L.; Zhu, J. Meteorological influences on daily variation and trend of summertime surface ozone over years of 2015-2020: Quantification for cities in the Yangtze River Delta. Sci. Total Environ. 2022, 834, 155107. [Google Scholar] [CrossRef]
- Freedman, L.S.; Pee, D. Return to a note on screening regression equations. Am. Stat. 1989, 43, 3. [Google Scholar] [CrossRef]
- Liu, D.; Ma, L.; Liu, J. Test on the impact of urban underground on summer microclimate. J. Xi’an Univ Arch. Tech. (Nat. Sci. Ed.) 2020, 52, 107–112. [Google Scholar] [CrossRef]
- Tao, W.; Liu, J.; Tao, S. Effects of Urban Underlying Surface Change on Ambient Atmospheric Environment. Trop. Geogr. 2014, 34, 283–292. [Google Scholar] [CrossRef]
- Tadayon, V.; Torabi, M. Sampling strategies for proportion and rate estimation in a spatially correlated population. Spat. Stat. 2022, 47, 100564. [Google Scholar] [CrossRef]
- Derwent, R.G.; Parrish, D.D.; Galbally, I.E.; Stevenson, D.S.; Doherty, R.M.; Naik, V.; Young, P.J. Uncertainties in models of tropospheric ozone based on Monte Carlo analysis: Tropospheric ozone burdens, atmospheric lifetimes and surface distributions. Atmos. Environ. 2018, 180, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Fiore, A.M.; Oberman, J.T.; Lin, M.Y.; Zhang, L.; Clifton, O.E.; Jacob, D.J.; Naik, V.; Horowitz, L.W.; Pinto, J.P.; Milly, G.P. Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations. Atmos. Environ. 2014, 96, 284–300. [Google Scholar] [CrossRef] [Green Version]
- Ross, S.M. Introduction to Probability and Statistics for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
Year and Index | Built-up Area of Whole Region (µg·m−3) | Non-Built-up Area of Whole Region (µg·m−3) | Built-up Area of BJ (µg·m−3) | Non-Built-up Area of BJ (µg·m−3) | Built-up Area of TJ (µg·m−3) | Non-Built-up Area of TJ (µg·m−3) | Built-up Area of TS (µg·m−3) |
---|---|---|---|---|---|---|---|
2016 | 54.87 | 50.38 | 56.78 | 54.26 | 51.47 | 47.80 | 54.59 |
2017 | 57.37 | 63.06 | 55.29 | 64.81 | 61.26 | 61.90 | 57.55 |
2018 | 59.77 | 63.82 | 58.27 | 64.84 | 65.11 | 63.14 | 58.21 |
2019 | 59.40 | 62.50 | 58.37 | 62.43 | 65.72 | 62.54 | 56.55 |
Average value * | 57.85 | 59.94 | 57.18 | 61.59 | 60.89 | 58.85 | 56.73 |
R2 * | 0.841 | 0.342 | 0.474 | 0.400 | 0.835 | 0.632 | 0.286 |
Slope * | 1.599 | 3.712 | 0.775 | 2.450 | 4.660 | 4.546 | 0.654 |
p * | 0.083 | - | - | - | 0.086 | - | - |
ID and Testing | Period | Build-up Area of BJ (µg/m−3) | Non-Build-up Area of BJ (µg/m−3) | Build-up Area of TJ (µg/m−3) | Non-Build-up Area of TJ (µg/m−3) | Build-up Area of TS (µg/m−3) |
---|---|---|---|---|---|---|
1 | January 2016 to December 2016 | 58.54 | 56.25 | 51.47 | 47.80 | 54.59 |
2 | February 2016 to January 2017 | 58.99 | 56.61 | 51.89 | 48.44 | 54.34 |
3 | March 2016 to February 2017 | 59.20 | 57.41 | 52.48 | 49.46 | 53.82 |
4 | April 2016 to March 2017 | 59.17 | 58.42 | 53.76 | 51.26 | 53.89 |
5 | May 2016 to April 2017 | 57.39 | 57.71 | 53.77 | 51.88 | 53.27 |
6 | June 2016 to May 2017 | 56.89 | 58.97 | 54.40 | 53.25 | 52.18 |
7 | July 2016 to June 2017 | 57.84 | 61.67 | 55.59 | 54.59 | 52.42 |
8 | August 2016 to July 2017 | 56.94 | 62.68 | 57.24 | 56.28 | 53.67 |
9 | September 2016 to August 2017 | 54.53 | 62.22 | 59.10 | 59.01 | 55.20 |
10 | October 2016 to September 2017 | 54.44 | 63.19 | 60.41 | 61.34 | 56.17 |
11 | November 2016 to October 2017 | 53.34 | 62.82 | 60.36 | 61.31 | 56.07 |
12 | December 2016 to November 2017 | 54.38 | 64.10 | 60.81 | 61.68 | 56.74 |
13 | January 2017 to December 2017 | 55.29 | 64.81 | 61.26 | 61.90 | 57.55 |
14 | February 2017 to January 2018 | 55.97 | 65.74 | 61.50 | 62.10 | 58.03 |
15 | March 2017 to February 2018 | 56.88 | 66.25 | 62.10 | 62.28 | 58.35 |
16 | April 2017 to March 2018 | 56.73 | 65.85 | 62.16 | 62.56 | 58.75 |
17 | May 2017 to April 2018 | 58.26 | 67.43 | 63.66 | 63.71 | 60.11 |
18 | June 2017 to May 2018 | 57.29 | 66.38 | 63.37 | 63.54 | 60.74 |
19 | July 2017 to June 2018 | 57.54 | 66.45 | 65.00 | 65.21 | 61.21 |
20 | August 2017 to July 2018 | 56.67 | 64.70 | 65.09 | 64.85 | 59.68 |
21 | September 2017 to August 2018 | 58.55 | 66.07 | 66.76 | 65.81 | 60.71 |
22 | October 2017 to September 2018 | 57.87 | 65.04 | 64.83 | 63.10 | 58.65 |
23 | November 2017 to October 2018 | 59.04 | 66.14 | 65.61 | 63.77 | 59.02 |
24 | December 2017 to November 2018 | 58.45 | 65.06 | 65.32 | 63.27 | 58.48 |
25 | January 2018 to December 2018 | 58.27 | 64.84 | 65.11 | 63.14 | 58.21 |
26 | February 2018 to January 2019 | 57.59 | 63.93 | 64.70 | 62.57 | 57.88 |
27 | March 2018 to February 2019 | 56.81 | 63.36 | 64.07 | 62.38 | 57.95 |
28 | April 2018 to March 2019 | 57.32 | 63.41 | 64.56 | 62.33 | 58.53 |
29 | May 2018 to April 2019 | 56.64 | 61.78 | 63.81 | 61.76 | 58.23 |
30 | June 2018 to May 2019 | 56.96 | 61.71 | 64.82 | 62.30 | 59.44 |
31 | July 2018 to June 2019 | 56.99 | 61.18 | 63.34 | 60.91 | 59.40 |
32 | August 2018 to July 2019 | 58.04 | 62.21 | 65.03 | 62.86 | 62.95 |
33 | September 2018 to August 2019 | 56.39 | 60.60 | 63.45 | 60.73 | 62.50 |
34 | October 2018 to September 2019 | 59.27 | 63.53 | 65.90 | 62.36 | 65.30 |
35 | November 2018 to October 2019 | 58.57 | 62.67 | 65.94 | 62.37 | 65.76 |
36 | December 2018 to November 2019 | 58.60 | 63.00 | 65.89 | 62.51 | 65.90 |
37 | January 2019 to December 2019 | 58.37 | 62.88 | 65.72 | 62.54 | 65.72 |
TMS estimate * MK testing * | βslope | 0.026 | 0.082 | 0.367 | 0.232 | 0.305 |
ZMK | 0.942 | 1.386 | 6.252 | 3.767 | 5.702 |
Meteorological Factor | BJ-B | BJ-N | TJ-B | TJ-N | TS |
---|---|---|---|---|---|
Average temperature (0.1 °C) | 0.812 ** | 0.785 ** | 0.834 ** | 0.836 ** | 0.823 ** |
Average wind speed (0.1 m·s−1) | 0.248 ** | 0.053 | 0.240 ** | 0.165 ** | 0.252 ** |
Average pressure (0.1 hPa) | −0.748 ** | −0.361 ** | −0.773 ** | −0.769 ** | −0.758 ** |
Average relative humidity (1%) | 0.110 ** | 0.060 * | 0.123 ** | 0.155 ** | 0.056 * |
Sunshine duration (0.1 h) | 0.385 ** | 0.408 ** | 0.496 ** | 0.500 ** | 0.408 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Feng, J.; Li, Z.; Han, C.; Yan, F.; Ding, Y. Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019. Sensors 2022, 22, 4854. https://doi.org/10.3390/s22134854
Bai L, Feng J, Li Z, Han C, Yan F, Ding Y. Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019. Sensors. 2022; 22(13):4854. https://doi.org/10.3390/s22134854
Chicago/Turabian StyleBai, Linyan, Jianzhong Feng, Ziwei Li, Chunming Han, Fuli Yan, and Yixing Ding. 2022. "Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019" Sensors 22, no. 13: 4854. https://doi.org/10.3390/s22134854
APA StyleBai, L., Feng, J., Li, Z., Han, C., Yan, F., & Ding, Y. (2022). Spatiotemporal Dynamics of Surface Ozone and Its Relationship with Meteorological Factors over the Beijing–Tianjin–Tangshan Region, China, from 2016 to 2019. Sensors, 22(13), 4854. https://doi.org/10.3390/s22134854