Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer
Abstract
:1. Introduction
2. Experiment
2.1. Instruments and Reagents
2.1.1. Instruments
2.1.2. Reagents
2.2. Experimental Methods
2.2.1. Preparation of Standard Solution
2.2.2. Sampling Methods
3. Results and Discussion
3.1. Performance Evaluation of Polarity Switching DT-IMS
3.1.1. Comparison of Aperture Grid Circuits
3.1.2. Mobility Spectrum with Fast Switching
3.2. Polarity Switching DT-IMS for the Detection of Explosives and Narcotics
3.2.1. Effect of Switching Speed with Evaporated Samples
3.2.2. Detection of Narcotics and Explosives
3.2.3. Validation of Calibration Method
3.2.4. Detection of Mixed Samples
3.2.5. Limit of Detection
4. Conclusions
- The delay of optocoupler which was used to control the TP ion gate could possibly introduce systematic errors for the measurement of mobility.
- The power consumption of the DC corona discharge ionization source is relatively large.
- The integration of the system needs to be improved.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Baumbach, J.; Berger, D.; Leonhardt, J.; Klockow, D. Ion mobility sensor in environmental analytical chemistry—Concept and first results. Int. J. Environ. Anal. Chem. 1993, 52, 189–193. [Google Scholar] [CrossRef]
- Bocos-Bintintan, V.; Thomas, C.P.; Ratiu, I.A. Sensors’ array of aspiration ion mobility spectrometer as a tool for bacteria discrimination. Talanta 2020, 206, 120233. [Google Scholar] [CrossRef] [PubMed]
- Kirk, A.T.; Zimmermann, S. Ionenmobilitätsspektrometrie. Chem. Unserer Zeit 2016, 50, 5. [Google Scholar] [CrossRef]
- Aguilera-Herrador, E.; Cárdenas, S.; Ruzsanyi, V.; Sielemann, S.; Valcárcel, M. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. J. Chromatogr. A 2008, 1214, 143–150. [Google Scholar] [CrossRef]
- Ahrens, A.; Zimmermann, S. Towards a hand-held, fast, and sensitive gas chromatograph-ion mobility spectrometer for detecting volatile compounds. Anal. Bioanal. Chem. 2021, 413, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Langejuergen, J.; Wagner, C.; Beutel, S.; Hopmeier, T.; Scheper, T.; Zimmermann, S. Non-invasive monitoring of bacterial growth and auto-induced protein production in a bioreactor with a closed-loop GC-IMS. Int. J. Ion Mobil. Spectrom. 2015, 18, 9–15. [Google Scholar] [CrossRef]
- Borsdorf, H.; Mayer, T. Response of halogenated compounds in ion mobility spectrometry depending on their structural features. Talanta 2011, 83, 815–822. [Google Scholar] [CrossRef]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.; Ewing, G. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef]
- Utriainen, M.; Kärpänoja, E.; Paakkanen, H. Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors. Sens. Actuators B Chem. 2003, 93, 17–24. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Asada, R.; Kishi, S.; Sekioka, R.; Kitagawa, N.; Tokita, K.; Yamamoto, S.; Seto, Y. Detection performance of a portable ion mobility spectrometer with 63Ni radioactive ionization for chemical warfare agents. Forensic Toxicol. 2010, 28, 84–95. [Google Scholar] [CrossRef]
- Drees, C.; Vautz, W.; Liedtke, S.; Rosin, C.; Althoff, K.; Lippmann, M.; Zimmermann, S.; Legler, T.J.; Yildiz, D.; Perl, T. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures. Appl. Microbiol. Biotechnol. 2019, 103, 9091–9101. [Google Scholar] [CrossRef] [PubMed]
- Kanu, A.B.; Hill, H.H., Jr. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. 2008, 1177, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Oxley, J.C.; Smith, J.L.; Luo, W.; Brady, J. Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos. 2009, 34, 539–543. [Google Scholar] [CrossRef]
- Puton, J.; Nousiainen, M.; Sillanpää, M. Ion mobility spectrometers with doped gases. Talanta 2008, 76, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Ladbeck, R.; Edelmann, A.; Quintas, G.; Lendl, B.; Karst, U. Determination of peroxide-based explosives using liquid chromatography with on-line infrared detection. Anal. Chem. 2006, 78, 8150–8155. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, M.; Kirk, A.T.; Hitzemann, M.; Zimmermann, S. Compact and Sensitive Dual Drift Tube Ion Mobility Spectrometer with a New Dual Field Switching Ion Shutter for Simultaneous Detection of Both Ion Polarities. Anal. Chem. 2020, 92, 11834–11841. [Google Scholar] [CrossRef]
- Atkinson, J.R.; Clark, A.; Taylor, S.J. Ion Mobility Spectrometer Comprising Two Drift Chambers. U.S. Patent 7,994,475, 9 August 2011. [Google Scholar]
- Machlinski, K.J.; Pompeii, M.A.; Johnson, G.P.; Fitzgerald, R.A.; Byrne, J.A. (Chemical Agent) Point Detection System (IPDS) employing Dual Ion Mobility Spectrometers. U.S. Patent 6,627,878, 30 September 2003. [Google Scholar]
- Scott, J.R.; Dahl, D.A.; Miller, C.J.; Tremblay, P.L.; McJunkin, T.R. Dual Mode Ion Mobility Spectrometer and Method for Ion Mobility Spectrometry. U.S. Patent 7,259,369, 21 August 2007. [Google Scholar]
- Spangler, G.E.; Wroten, J.F., Jr. Apparatus for Simultaneous Detection of Positive and Negative Ions in Ion Mobility Spectrometry. U.S. Patent 4,445,038, 24 April 1984. [Google Scholar]
- Zimmermann, S.; Kirk, A.; Lippmann, M.; Bohnhorst, A. Ion Mobility Spectrometer and Method for Analyzing Samples by Ion Mobility Spectrometry. U.S. Patent 11,293,899, 5 April 2022. [Google Scholar]
- Shaltaeva, Y.; Golovin, A.; Vasilyev, V.; Gromov, E.; Matusko, M.; Malkin, E.; Ivanov, I.; Belyakov, V.; Pershenkov, V. The Review of Bipolar Ion Mobility Spectrometers. In Proceedings of the International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Moldova, 18 September 2019. [Google Scholar]
- Hitzemann, M.; Kirk, A.T.; Lippmann, M.; Bohnhorst, A.; Zimmermann, S. Miniaturized Drift Tube Ion Mobility Spectrometer with Ultra-Fast Polarity Switching. Anal. Chem. 2022, 94, 777–786. [Google Scholar] [CrossRef]
- Gromov, E.; Matusko, M.; Shaltaeva, Y.; Pershenkov, V.; Belyakov, V.; Golovin, A.; Malkin, E.; Ivanov, I.; Vasilyev, V. Dual Mode Ion Mobility Spectrometer High Voltage Formation Circuit. In Proceedings of the IEEE 31st International Conference on Microelectronics (MIEL), Nis, Serbia, 16–18 September 2019. [Google Scholar]
- Pershenkov, V.; Belyakov, V.; Shaltaeva, Y.; Malkin, E.; Golovin, A.; Ivanov, I.; Vasilyev, V.; Matusko, M.; Gromov, E. Fast Switching of the Polarity of Dual Mode Ion Mobility Spectrometer. In Proceedings of the IEEE 31st International Conference on Microelectronics (MIEL), Nis, Serbia, 16–18 September 2019. [Google Scholar]
- Chen, C.; Tabrizchi, M.; Li, H. Ion gating in ion mobility spectrometry: Principles and advances. Trends Analyt. Chem. 2020, 133, 116100. [Google Scholar] [CrossRef]
- Zhou, Q.; Peng, L.; Jiang, D.; Wang, X.; Wang, H.; Li, H. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector. Sci. Rep. 2015, 5, 10659. [Google Scholar] [CrossRef] [Green Version]
- Armenta, S.; Esteve-Turrillas, F.; Alcala, M. Analysis of hazardous chemicals by “stand alone” drift tube ion mobility spectrometry: A review. Anal. Methods 2020, 12, 1163–1181. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Esteve-Turrillas, F.A.; Armenta, S.; Amorós, P.; Herrero-Martínez, J.M. Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction. Anal. Chim. Acta 2019, 1052, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Sun, T.; Zhao, J.; Wang, D.; Zhang, Z.; Yu, W. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS. Talanta 2018, 184, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xia, L.; Shen, C.; Huang, C.; Chu, Y. Dopant for detection of methamphetamine in the presence of nicotine with ion mobility spectrometry. Anal. Bioanal. Chem. 2021, 413, 4237–4246. [Google Scholar] [CrossRef] [PubMed]
- Reese, E.S.; de B Harrington, P. The analysis of methamphetamine hydrochloride by thermal desorption ion mobility spectrometry and SIMPLISMA. J. Forensic Sci. 1999, 44, 68–76. [Google Scholar] [CrossRef]
- Crawford, C.L.; Boudries, H.; Reda, R.J.; Roscioli, K.M.; Kaplan, K.A.; Siems, W.F.; Hill, H.H., Jr. Analysis of Black Powder by Ion Mobility—Time-of-Flight Mass Spectrometry. Anal. Chem. 2010, 82, 387–393. [Google Scholar] [CrossRef]
- Jiang, D.; Peng, L.; Wen, M.; Zhou, Q.; Chen, C.; Wang, X.; Chen, W.; Li, H. Dopant-assisted positive photoionization ion mobility spectrometry coupled with time-resolved thermal desorption for on-site detection of triacetone triperoxide and hexamethylene trioxide diamine in complex matrices. Anal. Chem. 2016, 88, 4391–4399. [Google Scholar] [CrossRef]
No. | Sample | Molecular | Generated Ion | Drift Time/ms | K0/cm2·V−1·s−1 (Measured) | K0/cm2·V−1·s−1 (Literature [31,32,33]) | ||
---|---|---|---|---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |||||
1 | Cocaine | C17H21NO4 | [M+H]+ | 11.90 | 0.025 | 1.170 | 0.003 | 1.16 |
2 | Ketamine | C13H16NOCl | [M+H]+ | 10.34 | 0.010 | 1.348 | 0.002 | 1.31 |
3 | Methamphetamine | C10H15N | [M+H]+ | 9.05 | 0.020 | 1.536 | 0.007 | 1.601 |
4 | Heroin | C21H23NO5 | [M+H−CH3COOH]+ | 11.91 | 0.020 | 1.169 | 0.002 | 1.17 |
[M+H]+ | 13.58 | 0.265 | 1.029 | 0.008 | 1.04 | |||
5 | Morphine | C17H19NO3 | [M+H−H2O]+ | 10.82 | 0.124 | 1.253 | 0.027 | 1.26 |
[M+H]+ | 11.88 | 0.025 | 1.172 | 0.002 | 1.22 | |||
6 | Marijuana | C21H30O2 | [M+H]+ | 13.16 | 0.012 | 1.059 | 0 | 1.07 |
No. | Sample | Molecular | Generated Ion | Drift Time/ms | K0/cm2·V−1·s−1 (Measured) | K0/cm2·V−1·s−1 (Literature [31,34,35]) | ||
---|---|---|---|---|---|---|---|---|
Average | Standard Deviation | Average | Standard Deviation | |||||
1 | TNT | C7H5N3O6 | [M−H]− | 9.18 | 0.006 | 1.519 | 0.001 | 1.53 |
2 | Black Powder | S | [S3]− | 6.47 | 0.010 | 2.147 | 0.006 | 2.26 |
3 | PETN | C5H8N4O | [M+NO3]− | 11.90 | 0.012 | 1.171 | 0.002 | 1.19 |
4 | HMX | C4H8N8O8 | [M+NO2]− | 10.86 | 0.010 | 1.282 | 0.002 | 1.28 |
5 | RDX | C3H6N6O6 | [M+NO2]− | 9.84 | 0.020 | 1.415 | 0.003 | 1.42 |
6 | HMTD | (CH2)6N2(O2)3 | [M+H]+ | 11.38 | 0.150 | 1.225 | 0.016 | 1.55 |
7 | TATP | C9H18O6 | [(CH3)2C(O)OO]H+ | 6.60 | 0.012 | 2.120 | 0.023 | 2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Gu, H.; Lv, Y.; Zhang, Y.; He, X.; Li, P. Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer. Sensors 2022, 22, 4866. https://doi.org/10.3390/s22134866
Li L, Gu H, Lv Y, Zhang Y, He X, Li P. Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer. Sensors. 2022; 22(13):4866. https://doi.org/10.3390/s22134866
Chicago/Turabian StyleLi, Lingfeng, Hao Gu, Yanzhen Lv, Yunjing Zhang, Xingli He, and Peng Li. 2022. "Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer" Sensors 22, no. 13: 4866. https://doi.org/10.3390/s22134866
APA StyleLi, L., Gu, H., Lv, Y., Zhang, Y., He, X., & Li, P. (2022). Ultra-Fast Polarity Switching, Non-Radioactive Drift Tube for the Miniaturization of Drift-Time Ion Mobility Spectrometer. Sensors, 22(13), 4866. https://doi.org/10.3390/s22134866