Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining
Abstract
:1. Introduction
2. Literature Survey
2.1. General Processes in Australian EDs
2.2. Data Mining in Predicting LOS
2.3. Factors Affecting Patient ED LOS
3. Research Methodology
3.1. Dataset
3.2. Data Quality of the VEMD
3.3. Data Pre-Processing
3.4. Data Analysis
4. Results
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forster, A.J.; Stiell, I.; Wells, G.; Lee, A.J.; Van Walraven, C. The Effect of Hospital Occupancy on Emergency Department Length of Stay and Patient Disposition. Acad. Emerg. Med. 2003, 10, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Kusumawati, H.I.; Magarey, J.; Rasmussen, P. Analysis of factors influencing length of stay in the Emergency Department in public hospital, Yogyakarta, Indonesia. Australas. Emerg. Care 2019, 22, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Welch, S.J.; Asplin, B.R.; Stone-Griffith, S.; Davidson, S.J.; Augustine, J.; Schuur, J.; Alliance, E.D.B. Emergency Department Operational Metrics, Measures and Definitions: Results of the Second Performance Measures and Benchmarking Summit. Ann. Emerg. Med. 2011, 58, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Boyle, J.; Good, N.; Lind, J. New emergency department quality measure: From access block to National Emergency Access Target compliance. Emerg. Med. Australas. 2013, 25, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.; Staib, A.; Khanna, S.; Good, N.M.; Boyle, J.; Cattell, R.; Heiniger, L.; Griffin, B.; Bell, A.J.; Lind, J.; et al. The National Emergency Access Target (NEAT) and the 4-hour rule: Time to review the target. Med. J. Aust. 2016, 204, 354. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Honan, B.; Glanville, T.; Hough, P.; Walker, K. Using data mining to predict emergency department length of stay greater than 4 hours: Derivation and single-site validation of a decision tree algorithm. Emerg. Med. Australas. 2020, 32, 416–421. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Emergency Department Care. 2018. Available online: https://www.aihw.gov.au/getmedia/9ca4c770-3c3b-42fe-b071-3d758711c23a/aihw-hse-216.pdf.aspx (accessed on 16 June 2021).
- Kienbacher, C.L.; Steinacher, A.; Fuhrmann, V.; Herkner, H.; Laggner, A.N.; Roth, D. Factors influencing door-to-triage- and triage-to-patient administration-time. Australas. Emerg. Care 2022, in press. [Google Scholar] [CrossRef]
- Van Der Linden, M.C.; Khursheed, M.; Hooda, K.; Pines, J.M.; Van Der Linden, N. Two emergency departments, 6000 km apart: Differences in patient flow and staff perceptions about crowding. Int. Emerg. Nurs. 2017, 35, 30–36. [Google Scholar] [CrossRef]
- Hou, X.-Y.; Chu, K. Emergency department in hospitals, a window of the world: A preliminary comparison between Australia and China. World J. Emerg. Med. 2010, 1, 180–184. [Google Scholar]
- Health and Human Services. Victorian Emergency Minimum Dataset (VEMD) Manual: 2020–2021, 25th ed.; DHHS: Melbourne, VIC, Australia, 2020. Available online: https://www2.health.vic.gov.au/hospitals-and-health-services/data-reporting/health-data-standards-systems/data-collections/vemd (accessed on 16 June 2021).
- Women’s Health Australia. Australian Longitudinal Study on Women’s Health. 2020. Available online: https://alswh.org.au/for-data-users/linked-data-overview/state-linked-data/ (accessed on 7 June 2022).
- Gill, S.D.; Lane, S.E.; Sheridan, M.; Ellis, E.; Smith, D.; Stella, J. Why do ‘fast track’ patients stay more than four hours in the emergency department? An investigation of factors that predict length of stay. Emerg. Med. Australas. 2018, 30, 641–647. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Holmes, G.; Donkin, A.; Witten, I.H. Weka: A machine learning workbench. In Proceedings of the ANZIIS’94-Australian New Zealand Intelligent Information Systems Conference, Brisbane, QLD, Australia, 29 November–2 December 1994; pp. 357–361. [Google Scholar]
- Graham, B.; Bond, R.; Quinn, M.; Mulvenna, M. Using data mining to predict hospital admissions from the emergency department. IEEE Access 2018, 6, 10458–10469. [Google Scholar] [CrossRef]
- Benbelkacem, S.; Kadri, F.; Chaabane, S.; Atmani, B. A data mining-based approach to predict strain situations in hospital emergency department systems. In Proceedings of the 10ème Conférence Francophone de Modélisation, Optimisation et Simulation-MOSIM’14, Nancy, France, 5–7 November 2014. [Google Scholar]
- Azari, A.; Janeja, V.P.; Mohseni, A. Predicting hospital length of stay (PHLOS): A multi-tiered data mining approach. In Proceedings of the IEEE 12th International Conference on Data Mining Workshops, Brussels, Belgium, 10 December 2012; pp. 17–24. [Google Scholar]
- Christ, M.; Grossmann, F.; Winter, D.; Bingisser, R.; Platz, E. Modern triage in the emergency department. Dtsch. Ärzteblatt Int. 2010, 107, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Ceglowski, A.; Churilov, L.; Wassertheil, J. Knowledge discovery through mining emergency department data. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 3–6 January 2005. [Google Scholar]
- Uriarte, A.G.; Zúñiga, E.R.; Moris, M.U.; Ng, A.H. How can decision makers be supported in the improvement of an emergency department? A simulation, optimization and data mining approach. Oper. Res. Health Care 2017, 15, 102–122. [Google Scholar] [CrossRef]
- Hand, D.J. Data mining: New challenges for statisticians. Soc. Sci. Comput. Rev. 2000, 18, 442–449. [Google Scholar] [CrossRef]
- Middleton, B.; Sittig, D.; Wright, A. Clinical Decision Support: A 25 Year Retrospective and a 25 Year Vision. Yearb. Med. Inform. 2016, 25, S103–S116. [Google Scholar]
- Musen, M.; Middleton, B.; Greenes, R. Clinical decision-support systems. In Biomedical Informatics; Shortliffe, E.H., Cimino, J.J., Eds.; Springer: London, UK, 2014; pp. 643–674. [Google Scholar]
- Hiscock, H.; Neely, R.J.; Lei, S.; Freed, G. Pediatric mental and physical health presentations to emergency departments, Victoria, 2008–2015. Med. J. Aust. 2018, 208, 343–348. [Google Scholar] [CrossRef]
- Chaou, C.-H.; Chen, H.-H.; Chang, S.-H.; Tang, P.; Pan, S.-L.; Yen, A.M.-F.; Chiu, T.-F. Predicting Length of Stay among Patients Discharged from the Emergency Department—Using an Accelerated Failure Time Model. PLoS ONE 2017, 12, e0165756. [Google Scholar] [CrossRef]
- Hachesu, P.R.; Ahmadi, M.; Alizadeh, S.; Sadoughi, F. Use of Data Mining Techniques to Determine and Predict Length of Stay of Cardiac Patients. Health Inform. Res. 2013, 19, 121–129. [Google Scholar] [CrossRef]
- Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, M.; Deekshatulu, B.; Chndra, P. Alternating decision trees for early diagnosis of heart disease. In Proceedings of the International Conference on Circuits, Communication, Control and Computing, Bangalore, India, 21–22 November 2014; pp. 322–328. [Google Scholar]
- Alyahya, M.S.; Hijazi, H.H.; Alshraideh, H.A.; Al-Nasser, A.D. Using decision trees to explore the association between the length of stay and potentially avoidable readmissions: A retrospective cohort study. Inform. Health Soc. Care 2017, 42, 361–377. [Google Scholar] [CrossRef]
- Liu, P.; Lei, L.; Yin, J.; Zhang, W.; Naijun, W.; El-Darzi, E. Healthcare data mining: Prediction inpatient length of stay. In Proceedings of the 3rd International IEEE Conference Intelligent Systems, London, UK, 4–6 September 2006; pp. 832–837. [Google Scholar]
- Biber, R.; Bail, H.J.; Sieber, C.; Weis, P.; Christ, M.; Singler, K. Correlation between age, emergency department length of stay and hospital admission rate in emergency department patients aged ≥70 years. Gerontology 2013, 59, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brick, C.; Lowes, J.; Lovstrom, L.; Kokotilo, A.; Villa-Roel, C.; Lee, P.; Lang, E.; Rowe, B.H. The impact of consultation on length of stay in tertiary care emergency departments. Emerg. Med. J. 2014, 31, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Asaro, P.V.; Lewis, L.M.; Boxerman, S.B. The impact of input and output factors on emergency department throughput. Acad. Emerg. Med. 2007, 14, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Casalino, E.; Wargon, M.; Peroziello, A.; Choquet, C.; Leroy, C.; Beaune, S.; Pereira, L.; Bernard, J.; Buzzi, J.-C. Predictive factors for longer length of stay in an emergency department: A prospective multicentre study evaluating the impact of age, patient’s clinical acuity and complexity, and care pathways. Emerg. Med. J. 2013, 31, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.L.; Sarkar, U.; Maselli, J.H.; Gonzales, R. Factors associated with longer ED lengths of stay. Am. J. Emerg. Med. 2007, 25, 643–650. [Google Scholar] [CrossRef]
- McCusker, J.; Karp, I.; Cardin, S.; Durand, P.; Morin, J. Determinants of emergency department visits by older adults: A systematic review. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2003, 10, 1362–1370. [Google Scholar] [CrossRef]
- Rashid, A.; Brooks, T.R.; Bessman, E.; Mears, S.C. Factors Associated with Emergency Department Length of Stay for Patients With Hip Fracture. Geriatr. Orthop. Surg. Rehabil. 2013, 4, 78–83. [Google Scholar] [CrossRef]
- Liew, D.; Liew, D.; Kennedy, M.P. Emergency department length of stay independently predicts excess inpatient length of stay. Med. J. Aust. 2003, 179, 524–526. [Google Scholar] [CrossRef]
- Wechkunanukul, K.; Grantham, H.; Damarell, R.; Clark, R.A. The association between ethnicity and delay in seeking medical care for chest pain: A systematic review. JBI Evid. Synth. 2016, 14, 208–235. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, D.; Engel, K.G.; Tang, T.S. Language Interpreter Utilization in the Emergency Department Setting: A Clinical Review. J. Health Care Poor Underserved 2008, 19, 352–362. [Google Scholar] [CrossRef]
- Karaca, Z.; Wong, H.S.; Mutter, R.L. Duration of patients’ visits to the hospital emergency department. BMC Emerg. Med. 2012, 12, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayi, G.; Ballou, D. Examining data quality. Commun. ACM 1998, 41, 54–57. [Google Scholar] [CrossRef]
- Marson, R.; Taylor, D.M.; Ashby, K.; Cassell, E. Victorian Emergency Minimum Dataset: Factors that impact upon the data quality. Emerg. Med. Australas. 2005, 17, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Dasu, T.; Johnson, T. Exploratory Data Mining and Data Cleaning; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Yoon, P.; Steiner, I.; Reinhardt, G. Analysis of factors influencing length of stay in the emergency department. Can. J. Emerg. Med. 2003, 5, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Palsetia, D.; Narayanan, R.; Patwary, M.M.A.; Agrawal, A.; Choudhary, A. Twitter trending topic classification. In Proceedings of the IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 251–258. [Google Scholar]
- Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Nishisato, S. Analysis of Categorical Data: Dual Scaling and Its Applications; Toronto University Press: Toronto, ON, Canada, 1980. [Google Scholar]
- Esling, P.; Agon, C. Time-series data mining. ACM Comput. Surv. (CSUR) 2012, 45, 12. [Google Scholar] [CrossRef] [Green Version]
- Reitermanova, Z. Data splitting. In WDS’10 Proceedings of Contributed Papers, Prague, Czech Republic, 1–4 June 2010; pp. 31–36. [Google Scholar]
- Bhargava, N.; Sharma, G.; Bhargava, R.; Mathuria, M. Decision tree analysis on J48 algorithm for data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013, 3, 1114–1119. [Google Scholar]
- Rodríguez, J.D.; Pérez, A.; Lozano, J. Sensitivity analysis of kappa-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef]
- Smith, T.C.; Frank, E. Introducing machine learning concepts with WEKA. In Statistical Genomics; Humana Press: New York, NY, USA, 2016; pp. 353–378. [Google Scholar]
- Witten, I.H. Data Mining with Weka. Available online: https://cs.famaf.unc.edu.ar/~laura/Weka_workshop/Slides.pdf (accessed on 16 June 2021).
- An, S.; Hu, Q.; Wang, C.; Guo, G.; Li, P. Data reduction based on NN-k NN measure for NN classification and regression. Int. J. Mach. Learn. Cybern. 2021, 12, 1649–1665. [Google Scholar] [CrossRef]
- O’farrell, M.; Lewis, E.; Flanagan, C.; Lyons, W.; Jackman, N. Comparison of k-NN and neural network methods in the classification of spectral data from an optical fibre-based sensor system used for quality control in the food industry. Sens. Actuators B Chem. 2005, 111, 354–362. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN Classification with Different Numbers of Nearest Neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1774–1785. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sesen, M.B.; Nicholson, A.; Banares-Alcantara, R.; Kadir, T.; Brady, M. Bayesian Networks for Clinical Decision Support in Lung Cancer Care. PLoS ONE 2013, 8, e82349. [Google Scholar] [CrossRef] [Green Version]
- Horng, S.; Sontag, D.A.; Halpern, Y.; Jernite, Y.; Shapiro, N.I.; Nathanson, L.A. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 2017, 12, e0174708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendell, K.; Koprinska, I.; Kyme, A.; Ebker-White, A.A.; Dinh, M. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making. Emerg. Med. Australas. 2018, 31, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Livieris, I.E.; Dimopoulos, I.F.; Kotsilieris, T.; Pintelas, P. Predicting length of stay in hospitalized patients using SSL algorithms. In Proceedings of the 8th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion, New York, NY, USA, 20–22 June 2018; pp. 16–22. [Google Scholar]
- Cheng, I.; Taylor, D.; Schull, M.J.; Zwarenstein, M.; Kiss, A.; Castren, M.; Brommels, M.; Yeoh, M.; Kerr, F. Comparison of emergency department time performance between a Canadian and an Australian academic tertiary hospital. Emerg. Med. Australas. 2019, 31, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, B.A.; Khairatul, K.; Farnaza, A. An assessment of patient waiting and consultation time in a primary healthcare clinic. Malays. Fam. Physician Off. J. Acad. Fam. Physicians Malays. 2017, 12, 14–21. [Google Scholar]
- Morley, C.; Unwin, M.; Peterson, G.M.; Stankovich, J.; Kinsman, L. Emergency department crowding: A systematic review of causes, consequences and solutions. PLoS ONE 2018, 13, e0203316. [Google Scholar] [CrossRef]
- Ono, T.; Tamai, A.; Takeuchi, D.; Tamai, Y.; Iseki, H.; Fukushima, H.; Kasahara, S. Predictors of length of stay in a ward for demented elderly: Gender differences. Psychogeriatrics 2010, 10, 153–159. [Google Scholar] [CrossRef]
- Kocher, K.E.; Meurer, W.J.; Desmond, J.S.; Nallamothu, B.K. Effect of Testing and Treatment on Emergency Department Length of Stay Using a National Database. Acad. Emerg. Med. 2012, 19, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Mentzoni, I.; Bogstrand, S.T.; Faiz, K.W. Emergency department crowding and length of stay before and after an increased catchment area. BMC Health. Serv. Res. 2019, 19, 506. [Google Scholar] [CrossRef]
- Francis, A.J.; Ray, M.J.; Marshall, M.C. Pathology processes and emergency department length of stay: The impact of change. Med. J. Aust. 2009, 190, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, M.; LaBond, V.; Britt, T.; Bishop, K.; Barber, K. Influence of emergency department patient volumes on CT utilization rate of the physician in triage. Am. J. Emerg. Med. 2021, 39, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Information Management Group. March. Data Quality Guideline (Version 1). 2018. Available online: https://www.vic.gov.au/sites/default/files/2019-07/IM-GUIDE-09-Data-Quality-Guideline.pdf (accessed on 16 June 2021).
- Fryer, D.; Strümke, I.; Nguyen, H. Shapley values for feature selection: The good, the bad, and the axioms. IEEE Access 2021, 9, 144352–144360. [Google Scholar] [CrossRef]
- Bollepalli, S.C.; Sahani, A.K.; Aslam, N.; Mohan, B.; Kulkarni, K.; Goyal, A.; Singh, B.; Singh, G.; Mittal, A.; Tandon, R.; et al. An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit. Diagnostics 2022, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, É.; Elbattah, M.; Gignon, M.; Dequen, G. Deep learning to predict hospitalization at triage: Integration of structured data and unstructured text. In Proceedings of the 2020 IEEE International Conference on Big Data, Atlanta, GA, USA, 10–13 December 2020; pp. 4836–4841. [Google Scholar]
- Baier, N.; Geissler, A.; Bech, M.; Bernstein, D.; Cowling, T.E.; Jackson, T.; van Manen, J.; Rudkjøbing, A.; Quentin, W. Emergency and urgent care systems in Australia, Denmark, England, France, Germany and the Netherlands—Analyzing organization, payment and reforms. Health Policy 2019, 123, 1–10. [Google Scholar] [CrossRef]
- Di Somma, S.; Paladino, L.; Vaughan, L.; Lalle, I.; Magrini, L.; Magnanti, M. Overcrowding in emergency department: An international issue. Intern. Emerg. Med. 2015, 10, 171–175. [Google Scholar] [CrossRef]
- Harris, A.; Sharma, A. Access block and overcrowding in emergency departments: An empirical analysis. Emerg. Med. J. 2010, 27, 508–511. [Google Scholar] [CrossRef] [Green Version]
Directly Used | Derived/Changed from the Original |
---|---|
sex | class |
triage category | X-ray needed? |
indigenous status description | pathology needed? |
interpreter require description | CT needed? |
preferred language | MRI needed? |
arrival mode description | ultrasound needed? |
mental health | greater than average? |
admission flag | age category |
Measure | J48 | LazyIBK | LR | NB | RF | ZeroR |
---|---|---|---|---|---|---|
Accuracy | 72.10% | 74.04% | 71.33% | 70.23% | 74.024% | 61.41% |
ROC | 0.762 | 0.82 | 0.773 | 0.758 | 0.81 | 0.05 |
F-Measure | 0.716 | 0.735 | 0.706 | 0.699 | 0.736 | - |
Recall | 0.72 | 0.74 | 0.713 | 0.701 | 0.74 | 0.613 |
Precision | 0.716 | 0.736 | 0.707 | 0.698 | 0.736 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurazada, S.G.; Gao, S.; Burstein, F.; Buntine, P. Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining. Sensors 2022, 22, 4968. https://doi.org/10.3390/s22134968
Gurazada SG, Gao S, Burstein F, Buntine P. Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining. Sensors. 2022; 22(13):4968. https://doi.org/10.3390/s22134968
Chicago/Turabian StyleGurazada, Sai Gayatri, Shijia (Caddie) Gao, Frada Burstein, and Paul Buntine. 2022. "Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining" Sensors 22, no. 13: 4968. https://doi.org/10.3390/s22134968
APA StyleGurazada, S. G., Gao, S., Burstein, F., & Buntine, P. (2022). Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining. Sensors, 22(13), 4968. https://doi.org/10.3390/s22134968