Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement
Abstract
:1. Introduction
2. Working Principle of EMATs
3. Finite Element Modeling and Simulation Analysis of EMATs
4. Optimization of EMATs
4.1. Orthogonal Test Design
4.2. Analysis the Results of the Orthogonal Test Design
5. The Modified Butterfly Coil EMAT
5.1. Configuration of the Modified EMAT
5.2. Analysis of Static Magnetic Field
5.3. Analysis of Lorentz Force
5.4. Analysis of Signal Amplitude
6. Conclusions
- (1)
- From the point of view of improving the energy conversion efficiency of the butterfly coil EMAT, and have the greatest influence on the signal amplitude, followed by , , , and , whereas has the least influence on the signal amplitude within the level of the selected factors. It can be seen that a decrease in and , and an increase in and , have a positive effect on the signal amplitude. In addition, when = 0.2, = 0.15, and = 5, the amplitude of the ultrasonic signal is the largest. The design of the butterfly coil EMAT was optimized according to the above guidelines. The result indicates that, after the orthogonal test design for optimization, the signal amplitude of the EMAT was increased by 1.13 times.
- (2)
- A modified butterfly coil EMAT with TSPM−OP was proposed, and the signal amplitude tended to be maximized when the ratio of the middle magnet width to the coil middle part width was approximately 1.2, beyond which the amplitude could not be increased. The modified butterfly coil EMAT with TSPM−OP results in a significant increase in the static magnetic flux density, the Lorentz force, and the signal amplitude. Compared to the traditional butterfly coil EMAT, the signal amplitude of the modified butterfly coil EMAT with TSPM−OP was increased by a factor of 4.97, thereby improving the energy conversion efficiency of the butterfly coil EMAT.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shaloo, M.; Schnall, M.; Klein, T.; Huber, N.; Reitinger, B. A Review of Non−Destructive Testing (NDT) Techniques for Defect Detection: Application to Fusion Welding and Future Wire Arc Additive Manufacturing Processes. Materials 2022, 15, 3697. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Kawakami, T.; Saito, T.; Sakai, K.; Kiwa, T.; Tsukada, K. Imaging of defect signal of reinforcing steel bar at high lift−off using a magnetic sensor array by unsaturated AC magnetic flux leakage testing. IEEE Trans. Magn. 2020, 57, 6500204. [Google Scholar] [CrossRef]
- Rieger, K.; Erni, D.; Rueter, D. Unidirectional emission and detection of Lamb waves based on a powerful and compact coils−only EMAT. NDT E Int. 2021, 122, 102492. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Huang, S.; Peng, L.; Wang, Q. Oblique point−focusing shear−horizontal guided−wave electromagnetic acoustic transducer with variable PPM spacing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1691–1700. [Google Scholar] [CrossRef]
- Every, A.G. The importance of ultrasonics in nondestructive testing and evaluation. Ultrasonics 2014, 54, 1717–1718. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Huang, S.; Wang, Q.; Wang, S.; Zhao, W. Improvement of unidirectional focusing periodic permanent magnet shear−horizontal wave electromagnetic acoustic transducer by oblique bias magnetic field. Sens. Actuators A Phys. 2019, 290, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Z.; Zheng, Y.; Guo, X.; Yuan, W.; Zhao, P. Transverse Crack Detection of Rail Base Considering Wedge-Like Structure and Using a Bulk−Wave Electromagnetic Acoustic Transducer. IEEE Trans. Instrum. Meas. 2022, 71, 6002009. [Google Scholar] [CrossRef]
- Isla, J.; Cegla, F. Optimization of the bias magnetic field of shear wave EMATs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1148–1160. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Ouyang, Q.; Zhang, X. An improved design of the spiral−coil EMAT for enhancing the signal amplitude. Sensors 2017, 17, 1106. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wu, Y. Orthogonal optimal design method for spiral coil EMAT considering lift−off effect: A case study. IEEE Access 2021, 9, 22062–22070. [Google Scholar] [CrossRef]
- Rueter, D. Induction coil as a non−contacting ultrasound transmitter and detector: Modeling of magnetic fields for improving the performance. Ultrasonics 2016, 65, 200–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueter, D. Experimental demonstration and circuitry for a very compact coil−only pulse Echo EMAT. Sensors 2017, 17, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandomzadeh, D.; Abbaspour−Fard, M.H. Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer. J. Magn. Magn. Mater. 2020, 513, 166823. [Google Scholar] [CrossRef]
- Pei, C.; Zhao, S.; Xiao, P.; Chen, Z. A modified meander−line−coil EMAT design for signal amplitude enhancement. Sens. Actuators A Phys. 2016, 247, 539–546. [Google Scholar] [CrossRef]
- Liu, Z.; Li, A.; Zhang, Y.; Deng, L.; Wu, B.; He, C. Development of a directional magnetic−concentrato−type electromagnetic acoustic transducer for ultrasonic guided wave inspection. Sens. Actuators A Phys. 2020, 303, 111859. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Li, B.; Tu, J.; Liao, C.; Wu, Q.; Feng, S.; Song, X. A new design of the dual−mode and pure longitudinal EMAT by using a radial−flux−focusing magnet. Sensors 2022, 22, 1316. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Huang, S.; Wang, Q.; Zhao, W. Point−focusing of shear−horizontal wave using fan−shaped periodic permanent magnet focusing coils EMAT for plate inspection. IEEE Sens. J. 2019, 19, 4393–4404. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Urayama, R.; Uchimoto, T.; Takagi, T.; Hashimoto, M. Small electromagnetic acoustic transducer with an enhanced unique magnet configuration. NDT E Int. 2020, 110, 102205. [Google Scholar] [CrossRef]
- Huang, S.; Wei, Z.; Zhao, W.; Wang, S. A new omni−directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects. Sensors 2014, 14, 3458–3476. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Dixon, S.; Wang, K.; Dai, J. Enhancement of signal amplitude of surface wave EMATs based on 3−D simulation analysis and orthogonal test method. NDT E Int. 2013, 59, 11–17. [Google Scholar] [CrossRef]
- Dutton, B.; Boonsang, S.; Dewhurst, R.J. A new magnetic configuration for a small in−plane electromagnetic acoustic transducer applied to laser−ultrasound measurements: Modelling and validation. Sens. Actuat. A Phys. 2006, 125, 249–259. [Google Scholar] [CrossRef]
- Ren, W.; He, J.; Dixon, S.; Xu, K. Enhancement of EMAT’s efficiency by using silicon steel laminations back−plate. Sens. Actuat. A Phys. 2018, 274, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, S.; Huang, S.; Peng, L.; Wang, Q. Point−focusing shear−horizontal guided wave EMAT optimization method using orthogonal test theory. IEEE Sens. J. 2020, 20, 6295–6304. [Google Scholar] [CrossRef]
- Lan, J.; Zhang, J.; Jia, X.; Gao, R. Optimization Design of Surface Wave Electromagnetic Acoustic Transducers Based on Simulation Analysis and Orthogonal Test Method. Sensors 2022, 22, 524. [Google Scholar] [CrossRef]
- Sun, H.; Huang, S.; Wang, Q.; Wang, S.; Zhao, W. Orthogonal optimal design method for point−focusing EMAT considering focal area dimensions. Sens. Actuat. A Phys. 2020, 312, 112109. [Google Scholar] [CrossRef]
- Jia, X.; Ouyang, Q. Optimal design of point−focusing shear vertical wave electromagnetic ultrasonic transducers based on orthogonal test method. IEEE Sens. J. 2018, 18, 8064–8073. [Google Scholar] [CrossRef]
- Cohen, L.G.; Roth, B.J.; Nilsson, J.; Dang, N.; Panizza, M.; Bandinelli, S.; Friauf, W.; Hallet, M. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 350–357. [Google Scholar] [CrossRef]
- Ashigwuike, E.C.; Balachandran, W.; Thomas, S.; Mackay, R. Numerical study of EMAT coil structure based on finite element method. Petrol. Technol. Dev. J 2013, 3, 8–24. [Google Scholar]
- Parra−Raad, J.; Khalili, P.; Cegla, F. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs. NDT E Int. 2020, 111, 102212. [Google Scholar] [CrossRef]
- Ashigwuike, E.C.; Balachandran, W.; Thomas, S. Simulation based comparative study of EMATs’ coil structure for long−range ultrasonic testing. In Proceedings of the British Institute of Non−Destructive Testing (NDT 2012), Northamptonshire, UK, 11–13 September 2012; p. 15. [Google Scholar]
- Zhang, H.; Su, R.; Wang, S.; Zhai, G.; Kang, L. Design of bulk wave EMAT using a pulsed electromagnet. In Proceedings of the 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu, China, 20–23 June 2014; pp. 242–246. [Google Scholar]
- Ogi, H. Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves. J. Appl. Phys. 1997, 82, 3940–3949. [Google Scholar] [CrossRef]
- Hao, K.; Huang, S.; Zhao, W.; Duan, R.; Wang, S. Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing. J. Cent. South Univ. 2011, 18, 749–754. [Google Scholar] [CrossRef]
- Jafari−Shapoorabadi, R.; Konrad, A.; Sinclair, A.N. Comparison of three formulations for eddy−current and skin effect problems. IEEE Trans. Magn. 2002, 38, 617–620. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, K.; Li, Y.; Zhang, X. Influence of the lift−off effect on the cut−off frequency of the EMAT−generated Rayleigh wave signal. Sensors 2014, 14, 19687–19699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, L.; Zhang, C.; Dixon, S.; Zhao, H.; Hill, S.; Liu, M. Enhancement of ultrasonic signal using a new design of Rayleigh−wave electromagnetic acoustic transducer. NDT E Int. 2017, 86, 36–43. [Google Scholar] [CrossRef]
Object | Parameters | Symbol | Value |
---|---|---|---|
Permanent magnet | Width | 30 mm | |
Height | 15 mm | ||
Magnetic flux density | 1.4 T | ||
Lift−off distance | 1 mm | ||
coil | Width | 0.5 mm | |
Height | 0.45 mm | ||
Inner diameter | 1.5 mm | ||
Number of turns | 7 | ||
Lift−off distance Interval | 0.3 mm 0.6 mm | ||
Al | Width | 100 mm | |
Thickness | 50 mm | ||
Mass density | 2700 kg/m3 | ||
Electrical conductivity | 3.77 × 107 S/m | ||
Young’s modulus | 70 × 109 Pa | ||
Passion’s ratio | 0.33 | ||
Excitation Current | Current Frequency | 100 A 500 kHz |
Levels | |||||||
---|---|---|---|---|---|---|---|
1 | 25 | 10 | 0.2 | 0.15 | 5 | 1 | 0.1 |
2 | 30 | 15 | 0.35 | 0.3 | 7 | 1.5 | 0.2 |
3 | 35 | 20 | 0.5 | 0.45 | 9 | 2 | 0.3 |
Run | Signal Amplitude (10−8 mm) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 25 | 10 | 0.2 | 0.15 | 5 | 1 | 0.1 | 8.537 |
2 | 25 | 15 | 0.35 | 0.3 | 7 | 1.5 | 0.2 | 4.417 |
3 | 25 | 20 | 0.5 | 0.45 | 9 | 2 | 0.3 | 7.937 |
4 | 30 | 10 | 0.2 | 0.3 | 7 | 2 | 0.3 | 5.002 |
5 | 30 | 15 | 0.35 | 0.45 | 9 | 1 | 0.1 | 6.203 |
6 | 30 | 20 | 0.5 | 0.15 | 5 | 1.5 | 0.2 | 10.02 |
7 | 35 | 10 | 0.35 | 0.15 | 9 | 1.5 | 0.3 | 4.731 |
8 | 35 | 15 | 0.5 | 0.3 | 5 | 2 | 0.1 | 8.414 |
9 | 35 | 20 | 0.2 | 0.45 | 7 | 1 | 0.2 | 6.639 |
10 | 25 | 10 | 0.5 | 0.45 | 7 | 1.5 | 0.1 | 6.793 |
11 | 25 | 15 | 0.2 | 0.15 | 9 | 2 | 0.2 | 8.614 |
12 | 25 | 20 | 0.35 | 0.3 | 5 | 1 | 0.3 | 9.104 |
13 | 30 | 10 | 0.35 | 0.45 | 5 | 2 | 0.2 | 6.492 |
14 | 30 | 15 | 0.5 | 0.15 | 7 | 1 | 0.3 | 5.864 |
15 | 30 | 20 | 0.2 | 0.3 | 9 | 1.5 | 0.1 | 8.256 |
16 | 35 | 10 | 0.5 | 0.3 | 9 | 1 | 0.2 | 4.237 |
17 | 35 | 15 | 0.2 | 0.45 | 5 | 1.5 | 0.3 | 7.463 |
18 | 35 | 20 | 0.35 | 0.15 | 7 | 2 | 0.1 | 7.684 |
Amplitude | ||||||||
---|---|---|---|---|---|---|---|---|
Signal amplitude (10−8 mm) | 7.567 | 5.965 | 7.419 | 7.575 | 8.338 | 6.764 | 7.648 | |
6.973 | 6.829 | 6.439 | 6.572 | 6.067 | 6.947 | 6.737 | ||
6.528 | 8.273 | 7.211 | 6.921 | 6.663 | 7.357 | 6.684 | ||
1.039 | 2.308 | 0.98 | 1.003 | 2.271 | 0.593 | 0.964 | ||
Influence rank | (2.308) > (2.271) > (1.039) > (1.003) > (0.98) > (0.964) > (0.593) |
EMAT | |||||||
---|---|---|---|---|---|---|---|
The traditional EMAT | 30 | 15 | 0.5 | 0.45 | 7 | 1.5 | 0.3 |
The optimized EMAT | 25 | 20 | 0.2 | 0.15 | 5 | 2 | 0.1 |
Level | |||||||
---|---|---|---|---|---|---|---|
3.36 mm | 4.48 mm | 5.6 mm | 6.72 mm | 7.84 mm | 8.96 mm | 10.08 mm | |
10.82 mm | 10.26 mm | 9.7 mm | 9.14 mm | 8.58 mm | 8.02 mm | 7.46 mm | |
5.6 mm | 5.6 mm | 5.6 mm | 5.6 mm | 5.6 mm | 5.6 mm | 5.6 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, M.; Jia, X.; Gao, R. Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement. Sensors 2022, 22, 4985. https://doi.org/10.3390/s22134985
Zhang J, Liu M, Jia X, Gao R. Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement. Sensors. 2022; 22(13):4985. https://doi.org/10.3390/s22134985
Chicago/Turabian StyleZhang, Jingjun, Min Liu, Xiaojuan Jia, and Ruizhen Gao. 2022. "Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement" Sensors 22, no. 13: 4985. https://doi.org/10.3390/s22134985
APA StyleZhang, J., Liu, M., Jia, X., & Gao, R. (2022). Numerical Study and Optimal Design of the Butterfly Coil EMAT for Signal Amplitude Enhancement. Sensors, 22(13), 4985. https://doi.org/10.3390/s22134985