Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GNP and MWCNT Suspension
2.3. Fabrication of GNP and MWCNT Hybrid Nanomaterials Film
2.4. Characterization
3. Results and Discussions
3.1. Tensile Properties of PI
3.2. Strain Sensitivity of Nanomaterial Film
3.3. Experimental Measurement of Strain Using Nanomaterial Film Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Lu, Y.; Lu, S.; Zhang, H.; Zhao, Z.; Ma, C.; Ma, K.; Wang, X. Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor. Sens. Actuators A Phys. 2021, 332, 113148. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Lian, Y.; Wang, M.; Liu, Y.; Li, Z.; Jiang, Y.; Gou, J. An integrated flexible multifunctional wearable electronic device for personal health monitoring and thermal management. Sens. Actuators A Phys. 2021, 318, 112514. [Google Scholar] [CrossRef]
- Zou, Q.; Wang, Y.; Yang, F. An intrinsically embedded pressure-temperature dual-mode soft sensor towards soft robotics. Sens. Actuators A Phys. 2021, 332, 113084. [Google Scholar] [CrossRef]
- Shih, B.; Shah, D.; Li, J.; Thuruthel, T.; Park, Y.; Iida, F.; Bao, Z.; Bottiglio, R.; Tolley, M. Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 2020, 5, eaaz9239. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Mei, D.; Zhu, L.; Wang, S.; Fu, X. Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Compos. Sci. Technol. 2022, 217, 109078. [Google Scholar] [CrossRef]
- Vu, C.C.; Kim, J. Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring. Sens. Actuators A Phys. 2020, 314, 112029. [Google Scholar] [CrossRef]
- Njuguna, M.K.; Yan, C.; Hu, N.; Bell, J.M.; Yarlagadda, P.K.D.V. Sandwiched carbon nanotube film as strain sensor. Compos. Part B 2012, 43, 2711–2717. [Google Scholar] [CrossRef] [Green Version]
- Hempel, M.; Nezich, D.; Kong, J.; Hofmann, M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012, 12, 5714–5718. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Wang, K.; Liu, Y.; Shang, Y. A novel strain sensor based on graphene composite films with layered structure. Compos. Part A 2016, 80, 95–100. [Google Scholar] [CrossRef]
- Yue, X.; Jia, Y.; Wang, X.; Zhou, K.; Zhai, W.; Zheng, G.; Dai, K.; Mi, L.; Liu, C.; Shen, C. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 2020, 189, 108030. [Google Scholar] [CrossRef]
- Panth, M.; Cook, B.; Zhang, Y.; Ewing, D.; Tramble, A.; Wilson, A.; Wu, J. High-performance strain sensors based on vertically aligned piezoelectric zinc oxide nanowire array/graphene nanohybrids. ACS Appl. Nano Mater. 2020, 3, 6711–6718. [Google Scholar] [CrossRef]
- Deng, C.; Lan, L.; He, P.; Ding, C.; Chen, B.; Zheng, W.; Zhao, X.; Chen, W.; Zhong, X.; Li, M.; et al. High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 2020, 8, 5541–5546. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Conn, A.T. A stretchable inductor with integrated strain sensing and wireless signal transfer. IEEE Sens. J. 2020, 20, 7384–7391. [Google Scholar] [CrossRef]
- Zhao, G.; Li, X.; Huang, M.; Zhen, Z.; Zhong, Y.; Chen, Q.; Zhao, X.; He, Y.; Hu, R.; Yang, T.; et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017, 46, 4417–4449. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2018, 31, 1801072. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wei, W.; Li, Z.; Duan, W.; Han, H.; Xie, Q. A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. J. Mater. Chem. A 2020, 8, 3509–3516. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Sun, J.; Huang, Y.; Hu, H.; Jiang, R.; Gai, W.; Li, G.; Zhi, C. Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Peng, Q.; Ding, Y.; Lin, Z.; Wang, C.; Li, Y.; Xu, F.; Li, J.; Yuan, Y.; He, X.; et al. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano 2015, 9, 8933–8941. [Google Scholar] [CrossRef]
- Boland, C.S.; Khan, U.; Backes, C.; O’Neill, A.; McCauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A.B.; et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 2014, 8, 8819–8830. [Google Scholar] [CrossRef]
- Bouhamed, A.; Müller, C.; Choura, S.; Kanoun, O. Processing and characterization of MWCNTs/epoxy nanocomposites thin films for strain sensing applications. Sens. Actuators A 2017, 257, 65–72. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Zhong, A.; Han, F.; Sun, R.; Wong, C.-P.; Niu, F.; Zhang, G.; Jin, Y. A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens. Actuators A 2020, 306, 111959. [Google Scholar] [CrossRef]
- Lv, B.; Chen, X.; Liu, C. A Highly Sensitive Piezoresistive Pressure Sensor Based on Graphene Oxide/Polypyrrole@Polyurethane Sponge. Sensors 2020, 20, 1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Z.; Naseem, Z.; Manzoor, S.; Talib, M.; Islam, S.S.; Mishra, P. Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Mater. Sci. Eng. B 2020, 255, 114528. [Google Scholar] [CrossRef]
- Larimi, S.R.; Nejad, H.R.; Oyatsi, M.; O’Brien, A.; Hoorfar, M.; Najjaran, H. Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals. Sens. Actuators A 2018, 271, 182–191. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, H.; Liu, Y.; Leng, J. Self-sensing properties of smart composite based on embedded buckypaper layer. Struct. Health Monit. 2015, 14, 127–136. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Vertuccio, L.; Guadagno, L. Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. Part B 2018, 145, 90–99. [Google Scholar] [CrossRef]
- Lu, S.; Tian, C.; Wang, X.; Chen, D.; Ma, K.; Leng, J.; Zhang, L. Health monitoring for composite materials with high linear and sensitivity GnPs/epoxy flexible strain sensors. Sens. Actuators A 2017, 267, 409–416. [Google Scholar] [CrossRef]
- Ghahramani, P.; Behdinan, K.; Naguib, H.E. Development of piezoresistive PDMS/MWCNT foam nanocomposite sensor with ultrahigh flexibility and compressibility. J. Intell. Mater. Syst. Struct. 2021, 1045389X211064345. [Google Scholar] [CrossRef]
Tensile Properties | PI Substrate |
---|---|
Young’s modulus GPa | 1.19 ± 0.065 |
Tensile strength MPa | 144 ± 0.90 |
Fracture strain | 1.46 ± 0.018 |
GNP | 0% | 25% | 50% | 75% | 100% | |
---|---|---|---|---|---|---|
Volume | ||||||
1 mL | 106 Ω | 76 Ω | 58 Ω | 48 Ω | 40 Ω | |
2 mL | 99 Ω | 72 Ω | 56 Ω | 46 Ω | 37 Ω | |
3 mL | 94 Ω | 69 Ω | 54 Ω | 44 Ω | 36 Ω | |
4 mL | 88 Ω | 66 Ω | 52 Ω | 43 Ω | 34 Ω | |
5 mL | 85 Ω | 63 Ω | 50 Ω | 41 Ω | 33 Ω |
GNP | 0% | 25% | 50% | 75% | 100% | |
---|---|---|---|---|---|---|
Volume | ||||||
1 mL | 7.75 | 13.78 | 18.0 | 22.8 | 24.0 | |
2 mL | 5.41 | 8.57 | 12.9 | 16.1 | 18.0 | |
3 mL | 4.47 | 6.70 | 9.73 | 12.1 | 15.4 | |
4 mL | 3.09 | 5.34 | 7.43 | 9.66 | 12.5 | |
5 mL | 2.87 | 5.03 | 6.43 | 8.32 | 10.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Her, S.-C.; Liang, Y.-M. Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application. Sensors 2022, 22, 5039. https://doi.org/10.3390/s22135039
Her S-C, Liang Y-M. Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application. Sensors. 2022; 22(13):5039. https://doi.org/10.3390/s22135039
Chicago/Turabian StyleHer, Shiuh-Chuan, and Yuan-Ming Liang. 2022. "Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application" Sensors 22, no. 13: 5039. https://doi.org/10.3390/s22135039
APA StyleHer, S. -C., & Liang, Y. -M. (2022). Carbon-Based Nanomaterials Thin Film Deposited on a Flexible Substrate for Strain Sensing Application. Sensors, 22(13), 5039. https://doi.org/10.3390/s22135039