IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy)
Abstract
:1. Introduction
2. Method
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Swart, J.A.; van der Windt, H.J.; Keulartz, J. Valuation of nature in conservation and restoration. Restor. Ecol. 2001, 9, 230–238. [Google Scholar] [CrossRef]
- Natali, A. Some considerations on conservation and restoration in contemporary art. Conserv. Sci. Cult. Herit. 2008, 8, 187–197. [Google Scholar]
- Lamarque, P. Reflections on the Ethics and Aesthetics of Restoration and Conservation. Br. J. Aesthet. 2016, 56, 281–299. [Google Scholar] [CrossRef] [Green Version]
- Yousefnejad, S.; Falamaki, M.M. Analyzing Truth and Time in the Conservation and Restoration of Cultural Heritage. Mon. Sci. J. Bagh E Nazar 2019, 15, 5–18. [Google Scholar]
- Noll-Minor, M. Conservation-restoration and conservation science-the challenge of transdisciplinarity. Ochr. Dziedzictwa Kult. 2019, 8, 223–238. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D. How science can contribute to the remedial conservation of cultural heritage. Chem. A Eur. J. 2021, 27, 10798–10806. [Google Scholar] [CrossRef]
- Blundo, D.S.; Ferrari, A.M.; del Hoyo, A.F.; Riccardi, M.P.; Muiña, F.E.G. Improving sustainable cultural heritage restoration work through life cycle assessment based model. J. Cult. Herit. 2018, 32, 221–231. [Google Scholar] [CrossRef]
- Barbabietola, N.; Tasso, F.; Grimaldi, M.; Alisi, C.; Chiavarini, S.; Marconi, P.; Sprocati, A.R. Microbe-based technology for a novel approach to conservation and restoration. EAI Spec. II Knowl. Diagn. Preserv. Cult. Herit. 2012, 69–76. Available online: https://www.researchgate.net/publication/272793185_Microbe-Based_Technology_for_a_Novel_Approach_to_Conservation_and_Restoration (accessed on 16 May 2022).
- Camuffo, D.; Bertolin, C. Unfavorable microclimate conditions in exhibition rooms: Early detection, risk identification, and preventive conservation measures. J. Paleontol. Tech. 2016, 15, 144–161. [Google Scholar]
- van Balen, K. Challenges that preventive conservation poses to the cultural heritage documentation field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 713. [Google Scholar] [CrossRef] [Green Version]
- Hirsenberger, H.; Ranogajec, J.; Vucetic, S.; Lalic, B.; Gracanin, D. Collaborative projects in cultural heritage conservation–management challenges and risks. J. Cult. Herit. 2019, 37, 215–224. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate change impacts on cultural heritage: A literature review. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e710. [Google Scholar] [CrossRef]
- Anaf, W.; van Bos, M.; Debulpaep, M.; Wei, W.; Schillemans, L.; Carton, T. The impact of vibrations on fragile historical mixed-media object. ECR Stud. Conserv. Restor. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Bayoumi, M.; Henin, E. Micro-climate control for paper heritage as a way of preventive conservation in museums. Int. J. Adv. Stud. World Archaeol. 2021, 4, 245–259. [Google Scholar] [CrossRef]
- Macchia, A.; Cesaro, S.N.; Campanella, L.; Maras, A.; Rocchia, M.; Roscioli, G. Which light for cultural heritage: Comparison of light sources with respect to realgar photodegradation. J. Appl. Spectrosc. 2013, 80, 637–643. [Google Scholar] [CrossRef]
- Andretta, M.; Coppola, F.; Pavlovic, A. Application of the quality norms to the monitoring and the preventive conservation analysis of the cultural heritage. Int. J. Qual. Res. 2015, 9, 299. [Google Scholar]
- Michalski, S. Paintings: Their response to temperature, relative humidity, shock, and vibration. Art Transit Stud. Transp. Paint. 1991, 223–248. Available online: http://www.urbis-libnet.org/vufind/Record/ICCROM.ICCROM51060 (accessed on 16 May 2022).
- Richard, M.; Mecklenburg, M.F.; Tumosa, C.S. Technical considerations for the transport of panel paintings. In The Structural Conservation of Panel Paintings; Dardes, K., Rothe, A., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 1998; pp. 525–556. [Google Scholar]
- Vici, P.D.; Mazzanti, P.; Uzielli, L. Mechanical response of wooden boards subjected to humidity step variations: Climatic chamber measurements and fitted mathematical models. J. Cult. Herit. 2006, 7, 37–48. [Google Scholar] [CrossRef]
- Dionisi-Vici, P.; de Vincenzi, M.; Uzielli, L. An analytical method for the determination of the climatic distance between different microclimates for the conservation of wooden cultural heritage objects. Stud. Conserv. 2011, 56, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Allegretti, O.; de Vincenzi, M.; Uzielli, L.; Dionisi-Vici, P. Long-term hygromechanical monitoring of Wooden Objects of Art (WOA): A tool for preventive conservation. J. Cult. Herit. 2013, 14, e161–e164. [Google Scholar] [CrossRef]
- Bratasz, Ł. Allowable microclimatic variations for painted wood. Stud. Conserv. 2013, 58, 65–79. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R. Micelle, microemulsions, and gels for the conservation of cultural heritage. Adv. Colloid Interface Sci. 2014, 205, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Pinna, D.; Galeotti, M.; Perito, B.; Daly, G.; Salvadori, B. In situ long-term monitoring of recolonization by fungi and lichens after innovative and traditional conservative treatments of archaeological stones in Fiesole (Italy). Int. Biodeterior. Biodegrad. 2018, 132, 49–58. [Google Scholar] [CrossRef]
- Camuffo, D. Microclimate for Cultural Heritage: Measurement, Risk Assessment, Conservation, Restoration, and Maintenance of Indoor and Outdoor Monuments; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lee, W.; Lee, D.H. Cultural heritage and the intelligent internet of things. J. Comput. Cult. Herit. 2019, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Maksimović, M.; Ćosović, M. Preservation of cultural heritage sites using IoT. In Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 20–22 March 2019; pp. 1–4. [Google Scholar]
- González, E.M.A.; Municio, E.; Alemán, M.N.; Marquez-Barja, J.M. Cultural heritage and internet of things. In Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good, Antwerp, Belgium, 14–16 September 2020; pp. 248–251. [Google Scholar]
- Lombardo, L.; Corbellini, S.; Parvis, M.; Elsayed, A.; Angelini, E.; Grassini, S. Wireless sensor network for distributed environmental monitoring. IEEE Trans. Instrum. Meas. 2017, 67, 1214–1222. [Google Scholar] [CrossRef]
- Agbota, H.; John, E.M.; Odlyha, M.; Strlič, M. Remote assessment of cultural heritage environments with wireless sensor array networks. Sensors 2014, 14, 8779–8793. [Google Scholar] [CrossRef] [Green Version]
- D’Alvia, L.; Palermo, E.; Rossi, S.; Cappa, P. Development of wireless sensor network for museum environmental monitoring. In Proceedings of the IMEKO International Conference on Metrology for Archeology and Cultural Heritage, Torino, Italy, 19–21 October 2016; pp. 19–21. [Google Scholar]
- Mesas-Carrascosa, F.J.; Santano, D.V.; de Larriva, J.E.M.; Cordero, R.O.; Fernández, R.E.H.; García-Ferrer, A. Monitoring heritage buildings with open source hardware sensors: A case study of the mosque-cathedral of Córdoba. Sensors 2016, 16, 1620. [Google Scholar] [CrossRef]
- Bacci, M.; Cucci, C.; Mencaglia, A.A.; Mignani, A.G. Innovative sensors for environmental monitoring in museums. Sensors 2008, 8, 1984–2005. [Google Scholar] [CrossRef] [Green Version]
- UNI 10586; Documentazione. Condizioni Climatiche per Ambienti di Conservazione di Documenti Grafici e Caratteristiche Degli Alloggiamenti. UNI: Milano, Italy, 1997.
- UNI 10829; Beni di Interesse Storico e Artistico—Condizioni Ambientali di Conservazione—Misurazione ed Analisi. UNI: Milano, Italy, 1999.
- UNI 10969; Beni culturali—Principi Generali per la Scelta e il Controllo del Microclima per la Conservazione dei Beni Culturali in Ambienti Interni. UNI: Milano, Italy, 2002.
- UNI 11120; Beni Culturali—Misurazione in Campo Della Temperatura Dell’aria e Della Superficie dei Manufatti. UNI: Milano, Italy, 2004.
- UNI 11131; Beni Culturali—Misurazione in Campo Dell’umidità Dell’aria. UNI: Milano, Italy, 2005.
- UNI 11161; Beni culturali—Manufatti lignei—Linee Guida per la Conservazione, il Restauro e la Manutenzione. UNI: Milano, Italy, 2005.
- UNI EN 15757; Conservazione dei Beni Culturali—Specifiche Concernenti la Temperatura e L’umidità Relativa per Limitare i Danni Meccanici Causati dal Clima ai Materiali Organici Igroscopici. UNI: Milano, Italy, 2010.
Materials and Objects of Organic Nature | ||||
---|---|---|---|---|
Temperature (°C) | Relative Humidity % | |||
Range | Deviation | Range | Deviation | |
Paper artifacts, papier-mâché, tissue paper, tapestries | 18–22 | 1.5 | 40–55 | 6 |
Fabrics, velarium, carpets, tapestries, silk, costumes, clothing, religious vestments, natural fibers, sisal, jute * | 19–24 | 1.5 | 30–50 | 6 |
Waxes, anatomical waxes | <18 | NR | NR | NR |
Herbaria and collections | 21–23 | 1.5 | 45–55 | 2 |
Entomological collections | 19–24 | 1.5 | 40–60 | 6 |
Animals, dried anatomical organs, mummies | 21–23 | 1.5 | 20–35 | - |
Furs, feathers, stuffed animals and birds | 4–10 | 1.5 | 30–50 | 5 |
Drawings, watercolors, pastels, and similar works on paper | 19–24 | 1.5 | 45–60 | 2 |
Ethnographic collections, masks, leather, and leather clothing | 19–24 | 1.5 | 45–60 | 6 |
Paintings on canvas, oil paintings on canvas, tempera, gouaches | 19–24 | 1.5 | 40–55 | 6 |
Archival documents on paper and parchments, papyri, manuscripts, printed volumes, philatelic collections | 13–18 | - | 50–60 | 5 |
Leather or parchment bindings | 19–24 | 1.5 | 45–55 | 6 |
Lacquers, decorated or lacquered furniture | 19–24 | 1.5 | 50–60 | 4 |
Polychrome wood sculptures, painted wood, paintings in wood, wooden icons, wooden musical instruments | 19–24 | 1.5 | 50–60 | 4 |
Unpainted wooden sculptures, wicker objects, wooden panels or bark | 19–24 | 1.5 | 45–60 | 4 |
Materials and Objects of Inorganic Nature | ||||
Porcelain, ceramics, grès, terracotta, non-excavation tiles and excavated tiles if demineralized | NR | - | NR | 10 |
Stones, rocks, minerals, stable (porous) meteorites | 19–24 | - | 40–60 | 6 |
Stome mosaics, stones **, rocks, minerals, meteorites (non porous), fossils and stone collections | 15–25 | - | 20–60 | 10 |
Metals, polished metals, metal alloys, silver, armour, weapons, bronze, coins, copper, tin, iron, steel, lead, pewter *** | NR | - | <50 | - |
Metals with active corrosion sites | NR | - | <40 | - |
Gold | NR | - | NR | - |
Chalk | 21–23 | 1.5 | 45–55 | 2 |
Unstable, iridescent, sensitive glass mosaics | 20–24 | 1.5 | 40–45 | - |
Mixed Objects | ||||
Wall paintings, frescoes, sinopites (detached) | 10–24 | - | 55–65 | - |
Dry wall paintings (detached) | 10–24 | - | 50–45 | - |
Ivories, horns, malacological, collection, eggs, nests, corals | 19–24 | 1.5 | 40–60 | 6 |
Synthetic fibres | 19–24 | - | 40–60 | - |
Film and photographs **** | 0–15 | - | 30–45 | - |
Device | Description | Main Performance | Size |
---|---|---|---|
STM32L4R9 | Microcontrollori ARM-MCU Ultra-low-power FPU Arm Cortex-M4 |
| 7 mm × 7 mm × 0.50 mm |
STTS751 | Low-voltage local digital temperature sensor |
| 2 mm × 2 mm × 0.5 mm |
HTS221 | Capacitive Digital Humidity Sensor |
| 2 mm × 2 mm × 0.9 mm |
LIS2DW12 | MEMS Digital Output Motion Sensor |
| 2.0 mm × 2.0 mm × 0.7 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trigona, C.; Costa, E.; Politi, G.; Gueli, A.M. IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors 2022, 22, 5097. https://doi.org/10.3390/s22145097
Trigona C, Costa E, Politi G, Gueli AM. IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors. 2022; 22(14):5097. https://doi.org/10.3390/s22145097
Chicago/Turabian StyleTrigona, Carlo, Eliana Costa, Giuseppe Politi, and Anna M. Gueli. 2022. "IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy)" Sensors 22, no. 14: 5097. https://doi.org/10.3390/s22145097
APA StyleTrigona, C., Costa, E., Politi, G., & Gueli, A. M. (2022). IoT-Based Microclimate and Vibration Monitoring of a Painted Canvas on a Wooden Support in the Monastero of Santa Caterina (Palermo, Italy). Sensors, 22(14), 5097. https://doi.org/10.3390/s22145097