Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review
Abstract
:1. Introduction
2. Theory and Measuring Method
3. Electrode Shape and Mass Sensitivity
4. Electrode Diameter (Area) and Mass Sensitivity
5. Electrode Thickness and Mass Sensitivity
6. Electrode Material and Mass Sensitivity
7. Operating Frequency and Mass Sensitivity
8. Conclusions and Perspectives
- (1)
- Whether in gas phase, liquid droplet, or liquid phase use, the frequency change of QCM is proportional to the equivalent mass sensitivity in the sensing region. Therefore, it is important to accurately calculate and measure the mass sensitivity of QCM.
- (2)
- Uniform mass sensitivity distribution of QCM is beneficial for practical use. The ring electrode QCM can obtain uniform mass sensitivity distribution when satisfying conditions of a suitable (1) ratio of inner and outer diameters; (2) inner diameter value; and (3) electrode thickness (depending on the mass loading factor). These three conditions should be adjusted accordingly when the electrode material is changed.
- (3)
- The thickness of the electrode greatly affects the mass sensitivity distribution of the QCM. Therefore, in practical use, scholars cannot ignore the influence of electrode thickness on the mass sensitivity distribution of QCM, and the company producing QCM should also provide the specific thickness value, which cannot be easily measured by users.
- (4)
- The electrode material also affects the mass sensitivity distribution of QCM. Moreover, the mass sensitivity of QCM with different electrode materials is not proportional to the density of electrode materials.
- (5)
- Increasing the fundamental frequency can significantly improve the mass sensitivity of the QCM due to the electrode effect and the frequency effect.
- (a)
- AT-cut quartz crystal is widely used as the basis of QCM. However, the dynamic characteristics of the AT-cut quartz crystal are poor, while the SC-cut type has a theoretical force-frequency coefficient of zero. Therefore, the mass sensitivity of other cut-type quartz crystal microbalances can be investigated in the future to meet the requirements for use in some specific occasions.
- (b)
- The vibration amplitude of the quartz crystal microbalance decays greatly in the liquid phase, while the gallium–lanthanum-based crystal microbalance performs well in liquid phase tests, so the mass sensitivity of other crystal microbalances (LGX) also needs to be investigated in the future.
Author Contributions
Funding
Conflicts of Interest
References
- Ji, Y.; Yin, Z.-W.; Yang, Z.; Deng, Y.-P.; Chen, H.; Lin, C.; Yang, L.; Yang, K.; Zhang, M.; Xiao, Q.; et al. From bulk to interface: Electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance. Chem. Soc. Rev. 2021, 50, 10743–10763. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Mecea, V.M. From quartz crystal microbalance to fundamental principles of mass measurements. Anal. Lett. 2005, 38, 753–767. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Yao, Y.; Luo, K.; Pan, H.; Wang, Q. Ringed Electrode Configuration Enhances the Sensitivity of QCM Humidity Sensor Based on Lignin Through Fringing Field Effect. IEEE Sens. J. 2021, 21, 22450–22458. [Google Scholar] [CrossRef]
- Pascal Delannoy, F.; Sorli, B.; Boyer, A. Quartz Crystal Microbalance (QCM) used as humidity sensor. Sens. Actuators A Phys. 2000, 84, 285–291. [Google Scholar] [CrossRef]
- Fauzi, F.; Rianjanu, A.; Santoso, I.; Triyana, K. Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials—A mini review. Sens. Actuators A Phys. 2021, 330, 112837. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Huang, X.-h.; Liu, D.; Mao, K.-l. Simulation analysis and experimental verification for sensitivity of IDE-QCM humidity sensors. Sens. Actuators B Chem. 2021, 341, 129992. [Google Scholar] [CrossRef]
- Bruckenstein, S.; Shay, M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta 1985, 30, 1295–1300. [Google Scholar] [CrossRef]
- Kumar, A.; Prajesh, R. The potential of acoustic wave devices for gas sensing applications. Sens. Actuators A Phys. 2022, 339, 113498. [Google Scholar] [CrossRef]
- Liao, S.; Ye, P.; Chen, C.; Zhang, J.; Xu, L.; Tan, F. Comparing of Frequency Shift and Impedance Analysis Method Based on QCM Sensor for Measuring the Blood Viscosity. Sensors 2022, 22, 3804. [Google Scholar] [CrossRef]
- Stephens, J.B.; Lave, E.G. Quartz Crystal Microbalances to Measure Wind Velocity and Air Humidity; NASA: Washington, DC, USA, 1975. [Google Scholar]
- Lu, C.; Czanderna, A.W. Applications of Piezoelectric Quartz Crystal Microbalances; Elsevier: Amsterdam, The Netherlands, 1984; Volume 7. [Google Scholar]
- Kanazawa, K.K.; Gordon, J.G. The oscillation frequency of a quartz resonator in contact with liquid. Anal. Chim. Acta 1985, 175, 99–105. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Martin, B.A.; Hager, H.E. Flow profile above a quartz crystal vibrating in liquid. J. Appl. Phys. 1989, 65, 2627–2629. [Google Scholar] [CrossRef]
- Kurosawa, S.; Tawara, E.; Kamo, N.; Ohta, F.; Hosokawa, T. Latex piezoelectric immunoassay: Detection of agglutination of antibody-bearing latex using a piezoelectric quartz crystal. Chem. Pharm. Bull. 1990, 38, 1117–1120. [Google Scholar] [CrossRef] [Green Version]
- Rodahl, M.; Höök, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 1995, 66, 3924–3930. [Google Scholar] [CrossRef] [Green Version]
- Höök, F.; Ray, A.; Nordén, B.; Kasemo, B. Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements. Langmuir 2001, 17, 8305–8312. [Google Scholar] [CrossRef]
- Huang, M.H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116. [Google Scholar] [CrossRef]
- Gagliardi, M.; Tori, G.; Agostini, M.; Lunardelli, F.; Mencarelli, F.; Sanmartin, C.; Cecchini, M. Detection of Oenological Polyphenols via QCM-D Measurements. Nanomaterials 2022, 12, 166. [Google Scholar] [CrossRef]
- Spagnolo, S.; Muckley, E.S.; Ivanov, I.N.; Hianik, T. Application of Multiharmonic QCM-D for Detection of Plasmin at Hydrophobic Surfaces Modified by β-Casein. Chemosensors 2022, 10, 143. [Google Scholar] [CrossRef]
- Thompson, M.; Kipling, A.L.; Duncan-Hewitt, W.C.; Rajaković, L.V.; Čavić-Vlasak, B.A. Thickness-shear-mode acoustic wave sensors in the liquid phase. A review. Analyst 1991, 116, 881–890. [Google Scholar] [CrossRef]
- Mujahid, A.; Afzal, A.; Dickert, L.F. An Overview of High Frequency Acoustic Sensors—QCMs, SAWs and FBARs—Chemical and Biochemical Applications. Sensors 2019, 19, 4395. [Google Scholar] [CrossRef] [Green Version]
- Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.; Saggin, B.; Scaccabarozzi, D. A review of quartz crystal microbalances for space applications. Sens. Actuators A Phys. 2019, 287, 48–75. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Özgür, E.; Denizli, A. Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. Chemosensors 2022, 10, 106. [Google Scholar] [CrossRef]
- Alassi, A.; Benammar, M.; Brett, D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. Sensors 2017, 17, 2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, A.W. High-frequency crystal units for primary frequency standards. Proc. IRE 1952, 40, 1030–1033. [Google Scholar] [CrossRef]
- Vig, J.R.; Walls, F.L. A review of sensor sensitivity and stability. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, Kansas City, MO, USA, 9 June 2000; pp. 30–33. [Google Scholar]
- Vig, J.R.; Filler, R.L.; Kim, Y. Chemical sensor based on quartz microresonators. JMemS 1996, 5, 138–140. [Google Scholar] [CrossRef]
- Bottom, V.E. Studies of the deterioration of quartz crystal units with special reference to the effects of temperature and humidity on the quartz plate and holder-techniques for fabrication stable crystal units. In Proceedings of the Chicago Crystal Conference, 11–12 July 1944; pp. 26–30. Available online: https://ieee-uffc.org/files/ieeeuffcorg/2021-09/Proceedings%20of%20Chicago%20Crystal%20Conference.pdf (accessed on 5 June 2022).
- Huang, X.; Bai, Q.; Hu, J.; Hou, D. A practical model of quartz crystal microbalance in actual applications. Sensors 2017, 17, 1785. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Chen, Q.; Pan, W.; Hu, J.; Yao, Y. Assessing the mass sensitivity for different electrode materials commonly used in quartz crystal microbalances (QCMs). Sensors 2019, 19, 3968. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Huang, X.; Pan, W.; Xu, Y.; Fan, Z. Investigation on mass sensitivity of n-m type electrode quartz crystal microbalance. Sensors 2019, 19, 2125. [Google Scholar] [CrossRef] [Green Version]
- Hillier, A.C.; Ward, M.D. Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal. Chem. 1992, 64, 2539–2554. [Google Scholar] [CrossRef]
- Ward, M.D.; Delawski, E.J. Radial mass sensitivity of the quartz crystal microbalance in liquid media. Anal. Chem. 1991, 63, 886–890. [Google Scholar] [CrossRef]
- Yang, L.; Huang, X.H. Response of quartz crystal microbalance loaded with single-drop liquid in gas phase. Open Electr. Electron. Eng. J. 2014, 8, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Huang, X. Using quartz crystal microbalance for field measurement of liquid viscosities. J. Sens. 2016, 2016, 7580483. [Google Scholar] [CrossRef]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Josse, F.; Lee, Y.; Martin, S.J.; Cernosek, R.W. Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators. Anal. Chem. 1998, 70, 237–247. [Google Scholar] [CrossRef]
- Tiersten, H.F. Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar]
- Richardson, A.; Bhethanabotla, V.R.; Smith, A.L.; Josse, F. Patterned electrodes for thickness shear mode quartz resonators to achieve uniform mass sensitivity distribution. IEEE Sens. J. 2009, 9, 1772–1777. [Google Scholar] [CrossRef]
- Kawasaki, T.; Mochida, T.; Katada, J.I.; Okahata, Y. Laser response of a quartz crystal microbalance: Frequency changes induced by light irradiation in the air phase. Anal. Sci. 2009, 25, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Gabrielli, C.; Keddam, M.; Torresi, R. Calibration of the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 1991, 138, 2657–2660. [Google Scholar] [CrossRef]
- Hu, J.; Huang, X.; Xue, S.; Yesilbas, G.; Knoll, A.; Schneider, O. Measurement of the mass sensitivity of QCM with ring electrodes using electrodeposition. Electrochem. Commun. 2020, 116, 106744. [Google Scholar] [CrossRef]
- Hu, J.; Xue, S.; Schneider, O.; Yesilbas, G.; Knoll, A.; Huang, X. Comparison of the absolute mass sensitivity of ring electrode QCM and standard QCM using electrodeposition. Electrochem. Commun. 2020, 119, 106826. [Google Scholar] [CrossRef]
- Cumpson, P.J.; Seah, M.P. The quartz crystal microbalance; radial/polar dependence of mass sensitivity both on and off the electrodes. Meas. Sci. Technol. 1990, 1, 544–555. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Pan, W.; Fu, W. Implementation of QCM with uniform mass sensitivity distribution. In Proceedings of the 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 19–23 July 2020; pp. 1–3. [Google Scholar]
- Richardson, A.; Bhethanabotla, V.R.; Smith, A.L.; Josse, F. Patterned electrodes for thickness shear mode quartz resonators to achieve uniform mass sensitivity distribution. In Proceedings of the SENSORS, 2008 IEEE, Lecce, Italy, 26–29 October 2008; pp. 1206–1209. [Google Scholar]
- Shi, J.; Fan, C.; Zhao, M.; Yang, J. Thickness-shear vibration characteristics of an AT-cut quartz resonator with rectangular ring electrodes. IJApE 2016, 51, 1–10. [Google Scholar] [CrossRef]
- Gao, J.; Huang, X.; Wang, Y. The modified design of ring electrode quartz crystal resonator for uniform mass sensitivity distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2031–2034. [Google Scholar] [CrossRef]
- Pan, W.; Huang, X.; Chen, Q. Analysis of the Uniformization of the QCM Mass Sensitivity Distribution through a Dot Multiring Electrode Structure. Anal. Chem. 2021, 93, 16828–16834. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, L. Uniformization of QCM’s mass sensitivity distribution by optimizing its metal electrode configurations. IEEE Sens. J. 2021, 21, 9008–9015. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, L. Uniform Mass Sensitivity Distribution of Elliptically Designed Electrodes Based on a Quartz Crystal Microbalance. ACS Omega 2021, 6, 32917–32924. [Google Scholar] [CrossRef]
- Pan, W.; Huang, X.; Chen, Q. Uniformization of mass sensitivity distribution of silver electrode QCM. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1953–1956. [Google Scholar] [CrossRef]
- Huang, X.; Bai, Q.; Pan, W.; Hu, J. Quartz crystal microbalance with approximately uniform sensitivity distribution. Anal. Chem. 2018, 90, 6367–6370. [Google Scholar] [CrossRef]
- Huang, X. A Quartz Crystal Microbalance Mass Sensor with Uniform Mass Sensitivity. CN201,810,308,560.1, 18 April 2018. [Google Scholar]
- Huang, X.; Pan, W.; Hu, J.; Bai, Q. The exploration and confirmation of the maximum mass sensitivity of quartz crystal microbalance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1888–1892. [Google Scholar] [CrossRef]
- Pan, W.; Huang, X.; Chen, Q.; Fan, Z.; Xu, Y. Analysis and verification of the relationship between the maximum mass sensitivity of quartz crystal microbalance and electrode parameters. Chin. Phys. Lett. 2019, 36, 070701. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Q.; Pan, W.; Hu, J. The Effect of Electrode thickness on Mass Sensitivity of QCM Cannot Be Ignored. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 68, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Stanford Research Systems QCM200. 2018. Available online: https://www.thinksrs.com/downloads/pdfs/manuals/QCM200m.pdf (accessed on 5 June 2022).
- Quan, Z.L.; Wu, X.J.; Chen, S.H.; Zhao, S.; Ma, H. Self-assembled monolayers of Schiff bases on copper surfaces. Corrosion 2001, 57, 195–201. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Wang, X.; Cheng, Z.; Xu, J. Facile preparation of N-rich functional polymer with porous framework as QCM sensing material for rapid humidity detection. Sens. Actuators B Chem. 2019, 288, 289–297. [Google Scholar] [CrossRef]
- Sato, Y. Bio-and chemical sensors and role of soft interface. In Molecular Soft-Interface Science; Sato, Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–198. [Google Scholar]
- Lee, J.; Jang, J.; Akin, D.; Savran, C.A.; Bashir, R. Real-time detection of airborne viruses on a mass-sensitive device. Appl. Phys. Lett. 2008, 93, 013901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.; Bandyopadhyay, R.; Pramanik, P. Stereo-regulated Schiff base siloxane polymer coated QCM sensor for amine vapor detection. Mater. Chem. Phys. 2019, 226, 214–219. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Yao, Y.; Mao, K. Analysis of the Effect of Electrode Materials on the Sensitivity of Quartz Crystal Microbalance. Nanomaterials 2022, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Uttenthaler, E.; Schräml, M.; Mandel, J.; Drost, S. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosens. Bioelectron. 2001, 16, 735–743. [Google Scholar] [CrossRef]
- Ogi, H.; Naga, H.; Fukunishi, Y.; Hirao, M.; Nishiyama, M. 170-MHz electrodeless quartz crystal microbalance biosensor: Capability and limitation of higher frequency measurement. Anal. Chem. 2009, 81, 8068–8073. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, X.; Pan, W.; Yao, Y. A high-Q quartz crystal microbalance with mass sensitivity up to 1017 Hz/kg. Chin. Phys. Lett. 2019, 36, 3. [Google Scholar] [CrossRef]
Group | 1.4–5.1 QCM | 2.5–5.1 QCM | 3.5–5.1 | |||
---|---|---|---|---|---|---|
Electrode | n-Electrode | m-Electrode | n-Electrode | m-Electrode | n-Electrode | m-Electrode |
(Hz) | 2690 | 2710 | 2550 | 2730 | 2240 | 2310 |
2590 | 2670 | 2600 | 2680 | 2240 | 2330 | |
2380 | 2640 | 2700 | 2760 | 2110 | 2290 | |
2570 | 2520 | 2520 | 2670 | 2240 | 2330 | |
2630 | 2540 | 2400 | 2640 | 2320 | 2300 | |
2480 | 2610 | 2640 | 2620 | 2270 | 2270 | |
2556.67 | 2615.00 | 2568.33 | 2683.33 | 2236.67 | 2305.00 | |
(Hz) | 110.94 | 73.96 | 104.39 | 53.17 | 69.47422 | 23.45 |
(Hz) | 2585.83 | 2625.83 | 2270.83 | |||
94.91 | 99.22 | 60.97 |
Thickness | ||||||
---|---|---|---|---|---|---|
500 Å | 1859/2209/2055/2086/2117/2115/2129/2066/ | 101 | 2079.5 | 2.87 | 2176.4 | 4.45% |
1000 Å | 2620/2600/2552/2479/2506/2668/2689/2695/ | 82.6 | 2601.1 | 3.64 | 2760.3 | 5.77% |
1500 Å | 2934/2968/2883/2873/2849/2950/2964/2896/ | 45.2 | 2914.6 | 4.02 | 3048.4 | 4.39% |
Groups | Em | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gold electrode QCM | A | 9,961,970 | 9,959,360 | 2610 | 2662 | 69.79 | 757.91 | 2759 | 3.52% |
9,963,680 | 9,960,970 | 2710 | |||||||
9,963,990 | 9,961,360 | 2630 | |||||||
9,962,450 | 9,959,850 | 2600 | |||||||
9,963,490 | 9,960,730 | 2760 | |||||||
B | 9,962,620 | 9,961,290 | 1330 | 1368 | 50.20 | 412.33 | 1501 | 8.86% | |
9,962,550 | 9,961,220 | 1330 | |||||||
9,962,080 | 9,960,730 | 1350 | |||||||
9,962,740 | 9,961,290 | 1450 | |||||||
9,963,580 | 9,962,200 | 1380 | |||||||
Silver electrode QCM | C | 10,000,940 | 9,998,460 | 2480 | 2428 | 70.90 | 757.91 | 2251 | 7.86% |
10,002,010 | 9,999,590 | 2420 | |||||||
10,001,480 | 9,998,960 | 2520 | |||||||
9,999,510 | 9,997,140 | 2370 | |||||||
9,997,960 | 9,995,610 | 2350 | |||||||
D | 10,001,480 | 10,000,270 | 1210 | 1222 | 19.24 | 412.33 | 1225 | 0.02% | |
10,001,300 | 10,000,080 | 1220 | |||||||
10,001,650 | 10,000,450 | 1200 | |||||||
9,999,620 | 9,998,390 | 1230 | |||||||
9,995,910 | 9,994,660 | 1250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Chen, Q.; Pan, W.; Yao, Y. Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review. Sensors 2022, 22, 5112. https://doi.org/10.3390/s22145112
Huang X, Chen Q, Pan W, Yao Y. Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review. Sensors. 2022; 22(14):5112. https://doi.org/10.3390/s22145112
Chicago/Turabian StyleHuang, Xianhe, Qiao Chen, Wei Pan, and Yao Yao. 2022. "Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review" Sensors 22, no. 14: 5112. https://doi.org/10.3390/s22145112
APA StyleHuang, X., Chen, Q., Pan, W., & Yao, Y. (2022). Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review. Sensors, 22(14), 5112. https://doi.org/10.3390/s22145112