Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Prosthesis Fabrication
2.3. Measurement Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Full Term | Abbreviation |
Total Surface Bearing | TSB |
Polystyrene Bead | PS |
Plaster of Paris | POP |
Force Sensing Resistors | FSR |
Socket Comfort Scale | SCS |
Resource Limited Environments | RLE |
Patella Tendon Bearing | PTB |
Thermoplastic Elastomer | TPE |
Solid Ankle Cushioned Heel | SACH |
Kilopascal | kPa |
Self-Selected Walking Speed | SSWS |
Coefficient of Variation | CV |
Minimum Detectable Change | MDC |
Two One-Sided Test | TOST |
Ethyl-Vinyl-Acetate | EVA |
References
- Shiyo, S.; Nagels, J.; Shangali, H.G. Recycling of Plaster of Paris. African J. Disabil. 2020, 9, 503. [Google Scholar] [CrossRef]
- Jones, G.K.; Rosendo, A.; Stopforth, R. Prosthetic Design Directives: Low-Cost Hands within Reach. IEEE Int. Conf. Rehabil. Robot. 2017, 2017, 1524–1530. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Abu Osman, N.A.A.; Eshraghi, A.; Ali, S.; Razak, N.A.A. Transtibial Prosthesis Suspension Systems: Systematic Review of Literature. Clin. Biomech. 2014, 29, 87–97. [Google Scholar] [CrossRef]
- Hanspal, R.S.; Fisher, K.; Nieveen, R. Prosthetic Socket Fit Comfort Score. Disabil. Rehabil. 2003, 25, 1278–1280. [Google Scholar] [CrossRef]
- Al-Fakih, E.; Abu Osman, N.; Mahmad Adikan, F. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research. Sensors 2016, 16, 1119. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Seo, K.; Hyung, S.; Shim, Y.; Lim, S.-C. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System. Sensors 2018, 18, 566. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.R.; Imtiaz, M.H.; Kwak, S.T.; Sazonov, E.; Chang, Y.-H.; Shen, X. A Lightweight Exoskeleton-Based Portable Gait Data Collection System. Sensors 2021, 21, 781. [Google Scholar] [CrossRef]
- Pappas, I.P.I.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A Reliable Gait Phase Detection System. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef]
- Ghonasgi, K.; Yousaf, S.N.; Esmatloo, P.; Deshpande, A.D. A Modular Design for Distributed Measurement of Human–Robot Interaction Forces in Wearable Devices. Sensors 2021, 21, 1445. [Google Scholar] [CrossRef]
- Dunai, L.; Novak, M.; García Espert, C. Human Hand Anatomy-Based Prosthetic Hand. Sensors 2020, 21, 137. [Google Scholar] [CrossRef]
- Paredes-Madrid, L.; Palacio, C.; Matute, A.; Parra Vargas, C. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions. Sensors 2017, 17, 2108. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Verdú, F.; Barquero, M.J.; Castellanos-Ramos, J.; Navas-González, R.; Sánchez, J.A.; Serón, J.; García-Cerezo, A. A Large Area Tactile Sensor Patch Based on Commercial Force Sensors. Sensors 2011, 11, 5489–5507. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, A.; Wanderley, M. Evaluation of Commercial Force-Sensing Resistors. In Proceedings of the International Conference on New Interfaces for Musical Expression, Paris, France, 4–8 June 2006. [Google Scholar]
- Gailey, R.S.; Roach, K.E.; Applegate, E.B.; Cho, B.; Cunniffe, B.; Licht, S.; Maguire, M.; Nash, M.S. The Amputee Mobility Predictor: An Instrument to Assess Determinants of the Lower-Limb Amputee’s Ability to Ambulate. Arch. Phys. Med. Rehabil. 2002, 83, 613–627. [Google Scholar]
- Narita, H.; Yokogushi, K.; Shii, S.; Kakizawa, M.; Nosaka, T. Suspension Effect and Dynamic Evaluation of the Total Surface Bearing (TSB) Trans-Tibial Prosthesis: A Comparison with the Patellar Tendon Bearing (PTB) Trans-Tibial Prosthesis. Prosthet. Orthot. Int. 1997, 21, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Selles, R.W.; Janssens, P.J.; Jongenengel, C.D.; Bussmann, J.B. A Randomized Controlled Trial Comparing Functional Outcome and Cost Efficiency of a Total Surface-Bearing Socket versus a Conventional Patellar Tendon-Bearing Socket in Transtibial Amputees. Arch. Phys. Med. Rehabil. 2005, 86, 154–161. [Google Scholar] [CrossRef]
- Sasaki, K.; Guerra, G.; Rattanakoch, J.; Miyata, Y.; Suntharalingam, S. Sustainable Development: A Fabricable Below-Knee Prostheses Liner for Resource Limited Environments. J. Med. Device 2019, 14, 014501. [Google Scholar] [CrossRef]
- Krajbich, J.; Pinzur, M.; Potter, B.; Stevens, P. Atlas of Amputations and Limb Deficienciess, 4th ed.; American Academy of Orthopaedic: Rosemont, IL, USA, 2016. [Google Scholar]
- Miyata, Y.; Sasaki, K.; Guerra, G.; Rattanakoch, J. Sustainable, Affordable and Functional: Reimagining Prosthetic Liners in Resource Limited Environments. Disabil. Rehabil. 2020, 44, 2941–2947. [Google Scholar] [CrossRef]
- Roerdink, M.; Cutti, A.G.; Summa, A.; Monari, D.; Veronesi, D.; van Ooijen, M.W.; Beek, P.J. Gaitography Applied to Prosthetic Walking. Med. Biol. Eng. Comput. 2014, 52, 963–969. [Google Scholar] [CrossRef]
- Chow, S.-C. Bioavailability and Bioequivalence in Drug Development. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Hafner, B.J.; Morgan, S.J.; Askew, R.L.; Salem, R. Psychometric Evaluation of Self-Report Outcome Measures for Prosthetic Applications. J. Rehabil. Res. Dev. 2016, 53, 797–812. [Google Scholar] [CrossRef]
- Thanh, N.H.; Poetsma, P.A.; Jensen, J.S. Preliminary Experiences with the CIR Casting System for Transtibial Prosthetic Sockets. Prosthetics Orthot. Int. 2009, 33, 130–134. [Google Scholar] [CrossRef]
- Singh, A.V.; Rosenkranz, D.; Ansari, M.H.D.; Singh, R.; Kanase, A.; Singh, S.P.; Johnston, B.; Tentschert, J.; Laux, P.; Luch, A. Artificial Intelligence and Machine Learning Empower Advanced Biomedical Material Design to Toxicity Prediction. Adv. Intell. Syst. 2020, 2, 2000084. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef]
- Yan, W.; Noel, G.; Loke, G.; Meiklejohn, E.; Khudiyev, T.; Marion, J.; Rui, G.; Lin, J.; Cherston, J.; Sahasrabudhe, A.; et al. Single Fibre Enables Acoustic Fabrics via Nanometre-Scale Vibrations. Nature 2022, 603, 616–623. [Google Scholar] [CrossRef]
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef]
- Weng, W.; Yang, J.; Zhang, Y.; Li, Y.; Yang, S.; Zhu, L.; Zhu, M. A Route Toward Smart System Integration: From Fiber Design to Device Construction. Adv. Mater. 2020, 32, 1902301. [Google Scholar] [CrossRef]
- Pirouzi, G.; Abu Osman, N.A.; Eshraghi, A.; Ali, S.; Gholizadeh, H.; Wan Abas, W.A.B. Review of the Socket Design and Interface Pressure Measurement for Transtibial Prosthesis. Sci. World J. 2014, 2014, 849073. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 21 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, K.; Guerra, G.; Lei Phyu, W.; Chaisumritchoke, S.; Sutdet, P.; Kaewtip, S. Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets. Sensors 2022, 22, 5224. https://doi.org/10.3390/s22145224
Sasaki K, Guerra G, Lei Phyu W, Chaisumritchoke S, Sutdet P, Kaewtip S. Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets. Sensors. 2022; 22(14):5224. https://doi.org/10.3390/s22145224
Chicago/Turabian StyleSasaki, Kazuhiko, Gary Guerra, Win Lei Phyu, Sirarat Chaisumritchoke, Prawina Sutdet, and Sirintip Kaewtip. 2022. "Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets" Sensors 22, no. 14: 5224. https://doi.org/10.3390/s22145224
APA StyleSasaki, K., Guerra, G., Lei Phyu, W., Chaisumritchoke, S., Sutdet, P., & Kaewtip, S. (2022). Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets. Sensors, 22(14), 5224. https://doi.org/10.3390/s22145224